首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This article investigates the optimal inventory and admission policies for a “Clicks‐and‐Bricks” retailer of seasonal products that, in addition to selling through its own physical and online stores, also sells through third‐party websites by means of affiliate programs. Through postings on partners' webpages, an affiliate program allows a retailer to attract customers who would otherwise be missed. However, this retailer needs to pay a commission for each sale that originates from the website operators participating in the program. The retailer may also refer online orders to other sources (such as distributors and manufacturers) for fulfillment through a drop‐shipping agreement and thus earns commissions. This would be an option when, for example, the inventories at the physical stores were running low. Therefore, during the selling horizon, the retailer needs to dynamically control the opening/closing of affiliate programs and decide on the fulfillment option for online orders. On the basis of a discrete‐time dynamic programming model, the optimal admission policy of the retailer is investigated in this paper, and the structural properties of the revenue function are characterized. Numerical examples are given to show the revenue impact of optimal admission control. The optimal initial stocking decisions at the physical stores are also studied. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

2.
We consider the joint pricing and inventory‐control problem for a retailer who orders, stocks, and sells two products. Cross‐price effects exist between the two products, which means that the demand of each product depends on the prices of both products. We derive the optimal pricing and inventory‐control policy and show that this policy differs from the base‐stock list‐price policy, which is optimal for the one‐product problem. We find that the retailer can significantly improve profits by managing the two products jointly as opposed to independently, especially when the cross‐price demand elasticity is high. We also find that the retailer can considerably improve profits by using dynamic pricing as opposed to static pricing, especially when the demand is nonstationary. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

3.
In many applications, managers face the problem of replenishing and selling products during a finite time horizon. We investigate the problem of making dynamic and joint decisions on product replenishment and selling in order to improve profit. We consider a backlog scenario in which penalty cost (resulting from fulfillment delay) and accommodation cost (resulting from shortage at the end of the selling horizon) are incurred. Based on continuous‐time and discrete‐state dynamic programming, we study the optimal joint decisions and characterize their structural properties. We establish an upper bound for the optimal expected profit and develop a fluid policy by resorting to the deterministic version of the problem (ie, the fluid problem). The fluid policy is shown to be asymptotically optimal for the original stochastic problem when the problem size is sufficiently large. The static nature of the fluid policy and its lack of flexibility in matching supply with demand motivate us to develop a “target‐inventory” heuristic, which is shown, numerically, to be a significant improvement over the fluid policy. Scenarios with discrete feasible sets and lost‐sales are also discussed in this article.  相似文献   

4.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

5.
We consider a decentralized distribution channel where demand depends on the manufacturer‐chosen quality of the product and the selling effort chosen by the retailer. The cost of selling effort is private information for the retailer. We consider three different types of supply contracts in this article: price‐only contract where the manufacturer sets a wholesale price; fixed‐fee contract where manufacturer sells at marginal cost but charges a fixed (transfer) fee; and, general franchise contract where manufacturer sets a wholesale price and charges a fixed fee as well. The fixed‐fee and general franchise contracts are referred to as two‐part tariff contracts. For each contract type, we study different contract forms including individual, menu, and pooling contracts. In the analysis of the different types and forms of contracts, we show that the price only contract is dominated by the general franchise menu contract. However, the manufacturer may prefer to offer the fixed‐fee individual contract as compared to the general franchise contract when the retailer's reservation utility and degree of information asymmetry in costs are high. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

6.
Spatial pricing means a retailer price discriminates its customers based on their geographic locations. In this article, we study how an online retailer should jointly allocate multiple products and facilitate spatial price discrimination to maximize profits. When deciding between a centralized product allocation ((i.e., different products are allocated to the same fulfillment center) and decentralized product allocation (ie, different products are allocated to different fulfillment centers), the retailer faces the tradeoff between shipment pooling (ie, shipping multiple products in one package), and demand localization (ie, stocking products to satisfy local demand) based on its understanding of customers' product valuations. In our basic model, we consider two widely used spatial pricing policies: free on board (FOB) pricing that charges each customer the exact amount of shipping cost, and uniform delivered (UD) pricing that provides free shipping. We propose a stylized model and find that centralized product allocation is preferred when demand localization effect is relatively low or shipment pooling benefit is relatively high under both spatial pricing policies. Moreover, centralized product allocation is more preferred under the FOB pricing which encourages the purchase of virtual bundles of multiple products. Furthermore, we respectively extend the UD and FOB pricing policies to flat rate shipping (ie, the firm charges a constant shipping fee for each purchase), and linear rate shipping (ie, the firm sets the shipping fee as a fixed proportion of firm's actual fulfillment costs). While similar observations from the basic model still hold, we find the firm can improve its profit by sharing the fulfillment cost with its customers via the flat rate or linear rate shipping fee structure.  相似文献   

7.
We study in this paper the price‐dependent (PD) newsvendor model in which a manufacturer sells a product to an independent retailer facing uncertain demand and the retail price is endogenously determined by the retailer. We prove that for a zero salvage value and some expected demand functions, in equilibrium, the manufacturer may elect not to introduce buybacks. On the other hand, if buybacks are introduced in equilibrium, their introduction has an insignificant effect on channel efficiency improvement, but, by contrast, may significantly shift profits from the retailer to the manufacturer. We further demonstrate that the introduction of buybacks increases the wholesale price, retail price, and inventory level, as compared to the wholesale price‐only contract, and that the corresponding vertically integrated firm offers the lowest retail price and highest inventory level. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

8.
Vendor‐managed revenue‐sharing arrangements are common in the newspaper and other industries. Under such arrangements, the supplier decides on the level of inventory while the retailer effectively operates under consignment, sharing the sales revenue with his supplier. We consider the case where the supplier is unable to predict demand, and must base her decisions on the retailer‐supplied probabilistic forecast for demand. We show that the retailer's best choice of a distribution to report to his supplier will not be the true demand distribution, but instead will be a degenerate distribution that surprisingly induces the supplier to provide the system‐optimal inventory quantity. (To maintain credibility, the retailer's reports of daily sales must then be consistent with his supplied forecast.) This result is robust under nonlinear production costs and nonlinear revenue‐sharing. However, if the retailer does not know the supplier's production cost, the forecast “improves” and could even be truthful. That, however, causes the supplier's order quantity to be suboptimal for the overall system. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

9.
In this article, we consider a classic dynamic inventory control problem of a self‐financing retailer who periodically replenishes its stock from a supplier and sells it to the market. The replenishment decisions of the retailer are constrained by cash flow, which is updated periodically following purchasing and sales in each period. Excess demand in each period is lost when insufficient inventory is in stock. The retailer's objective is to maximize its expected terminal wealth at the end of the planning horizon. We characterize the optimal inventory control policy and present a simple algorithm for computing the optimal policies for each period. Conditions are identified under which the optimal control policies are identical across periods. We also present comparative statics results on the optimal control policy. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

10.
We study a selling practice that we refer to as locational tying (LT), which seems to be gaining wide popularity among retailers. Under this strategy, a retailer “locationally ties” two complementary items that we denote by “primary” and “secondary.” The retailer sells the primary item in an appropriate “department” of his or her store. To stimulate demand, the secondary item is offered in the primary item's department, where it is displayed in very close proximity to the primary item. We consider two variations of LT: In the multilocation tying strategy (LT‐M), the secondary item is offered in its appropriate department in addition to the primary item's department, whereas in the single‐location tying strategy (LT‐S), it is offered only in the primary item's location. We compare these LT strategies to the traditional independent components (IC) strategy, in which the two items are sold independently (each in its own department), but the pricing/inventory decisions can be centralized (IC‐C) or decentralized (IC‐D). Assuming ample inventory, we compare and provide a ranking of the optimal prices of the four strategies. The main insight from this comparison is that relative to IC‐D, LT decreases the price of the primary item and adjusts the price of the secondary item up or down depending on its popularity in the primary item's department. We also perform a comparative statics analysis on the effect of demand and cost parameters on the optimal prices of various strategies, and identify the conditions that favor one strategy over others in terms of profitability. Then we study inventory decisions in LT under exogenous pricing by developing a model that accounts for the effect of the primary item's stock‐outs on the secondary item's demand. We find that, relative to IC‐D, LT increases the inventory level of the primary item. We also link the profitability of different strategies to the trade‐off between the increase in demand volume of the secondary item as a result of LT and the potential increase in inventory costs due to decentralizing the inventory of the secondary item. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

11.
We consider a simple two‐stage supply chain with a single retailer facing i.i.d. demand and a single manufacturer with finite production capacity. We analyze the value of information sharing between the retailer and the manufacturer over a finite time horizon. In our model, the manufacturer receives demand information from the retailer even during time periods in which the retailer does not order. To analyze the impact of information sharing, we consider the following three strategies: (1) the retailer does not share demand information with the manufacturer; (2) the retailer does share demand information with the manufacturer and the manufacturer uses the optimal policy to schedule production; (3) the retailer shares demand information with the manufacturer and the manufacturer uses a greedy policy to schedule production. These strategies allow us to study the impact of information sharing on the manufacturer as a function of the production capacity, and the frequency and timing in which demand information is shared. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

12.
This article is concerned with the determination of pricing strategies for a firm that in each period of a finite horizon receives replenishment quantities of a single product which it sells in two markets, for example, a long‐distance market and an on‐site market. The key difference between the two markets is that the long‐distance market provides for a one period delay in demand fulfillment. In contrast, on‐site orders must be filled immediately as the customer is at the physical on‐site location. We model the demands in consecutive periods as independent random variables and their distributions depend on the item's price in accordance with two general stochastic demand functions: additive or multiplicative. The firm uses a single pool of inventory to fulfill demands from both markets. We investigate properties of the structure of the dynamic pricing strategy that maximizes the total expected discounted profit over the finite time horizon, under fixed or controlled replenishment conditions. Further, we provide conditions under which one market may be the preferred outlet to sale over the other. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 531–549, 2015  相似文献   

13.
We analyze a supply chain of a manufacturer and two retailers, a permanent retailer who always stocks the manufacturer's product and an intermittent deal‐of‐the day retailer who sells the manufacturer's product online for a short time. We find that without a deal‐of‐the‐day (DOTD) retailer, it is suboptimal for the manufacturer to offer a quantity discount while it is optimal for the retailer to offer periodic price discounts to consumers. With the addition of a DOTD retailer, it is likely to be optimal for the manufacturer to offer a quantity discount. We show that even without market expansion, i.e., no exclusive DOTD retailer consumers, opening the intermittent channel can leave the permanent retailer no worse‐off while increasing the manufacturer's profit. We identify the regular and discounted wholesale prices and the threshold quantity at which the manufacturer should give the discount. We also identify the optimal retail prices. We find that opening the intermittent channel increases the profit of the manufacturer, is likely to decrease the average retail price and to increase sales, and may increase the permanent retailer's profit. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 505–528, 2016  相似文献   

14.
Private‐label products are of increasing importance in many retail categories. While national‐brand products are designed by the manufacturer and sold by the retailer, the positioning of store‐brand products is under the complete control of the retailer. We consider a scenario where products differ on a performance quality dimension and we analyze how retailer–manufacturer interactions in product positioning are affected by the introduction of a private‐label product. Specifically, we consider a national‐brand manufacturer who determines the quality of its product as well the product's wholesale price charged to the retailer. Given the national‐brand quality and wholesale price, the retailer then decides the quality level of its store brand and sets the retail prices for both products. We find that a manufacturer can derive substantial benefits from considering a retailer's store‐brand introduction when determining the national brand's quality and wholesale price. If the retailer has a significant cost disadvantage in producing high‐quality products, the manufacturer does not need to adjust the quality of the national‐brand product, but he should offer a wholesale price discount to ensure its distribution through the retailer. If the retailer is competitive in providing products of high‐quality, the manufacturer should reduce this wholesale price discount and increase the national‐brand quality to mitigate competition. Interestingly, we find the retailer has incentive to announce a store‐brand introduction to induce the manufacturer's consideration of these plans in determining the national‐brand product quality and wholesale price. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

15.
Manufacturer rebates are commonly used as price discount tools for attracting end customers. In this study, we consider a two‐stage supply chain with a manufacturer and a retailer, where a single seasonal product faces uncertain and price‐sensitive demand. We characterize the impact of a manufacturer rebate on the expected profits of both the manufacturer and the retailer. We show that unless all of the customers claim the rebate, the rebate always benefits the manufacturer. Our results thus imply that “mail‐in rebates,” where some customers end up not claiming the rebate, particularly when the size of the rebate is relatively small, always benefit the manufacturer. On the other hand, an “instant rebate,” such as the one offered in the automotive industry where every customer redeems the rebate on the spot when he/she purchases a car, does not necessarily benefit the manufacturer. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

16.
We consider the problem of assessing the value of demand sharing in a multistage supply chain in which the retailer observes stationary autoregressive moving average demand with Gaussian white noise (shocks). Similar to previous research, we assume each supply chain player constructs its best linear forecast of the leadtime demand and uses it to determine the order quantity via a periodic review myopic order‐up‐to policy. We demonstrate how a typical supply chain player can determine the extent of its available information in the presence of demand sharing by studying the properties of the moving average polynomials of adjacent supply chain players. The retailer's demand is driven by the random shocks appearing in the autoregressive moving average representation for its demand. Under the assumptions we will make in this article, to the retailer, knowing the shock information is equivalent to knowing the demand process (assuming that the model parameters are also known). Thus (in the event of sharing) the retailer's demand sequence and shock sequence would contain the same information to the retailer's supplier. We will show that, once we consider the dynamics of demand propagation further up the chain, it may be that a player's demand and shock sequences will contain different levels of information for an upstream player. Hence, we study how a player can determine its available information under demand sharing, and use this information to forecast leadtime demand. We characterize the value of demand sharing for a typical supply chain player. Furthermore, we show conditions under which (i) it is equivalent to no sharing, (ii) it is equivalent to full information shock sharing, and (iii) it is intermediate in value to the two previously described arrangements. Although it follows from existing literature that demand sharing is equivalent to full information shock sharing between a retailer and supplier, we demonstrate and characterize when this result does not generalize to upstream supply chain players. We then show that demand propagates through a supply chain where any player may share nothing, its demand, or its full information shocks (FIS) with an adjacent upstream player as quasi‐ARMA in—quasi‐ARMA out. We also provide a convenient form for the propagation of demand in a supply chain that will lend itself to future research applications. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 515–531, 2014  相似文献   

17.
We consider a two‐stage supply chain, in which multi‐items are shipped from a manufacturing facility or a central warehouse to a downstream retailer that faces deterministic external demand for each of the items over a finite planning horizon. The items are shipped through identical capacitated vehicles, each incurring a fixed cost per trip. In addition, there exist item‐dependent variable shipping costs and inventory holding costs at the retailer for items stored at the end of the period; these costs are constant over time. The sum of all costs must be minimized while satisfying the external demand without backlogging. In this paper we develop a search algorithm to solve the problem optimally. Our search algorithm, although exponential in the worst case, is very efficient empirically due to new properties of the optimal solution that we found, which allow us to restrict the number of solutions examined. Second, we perform a computational study that compares the empirical running time of our search methods to other available exact solution methods to the problem. Finally, we characterize the conditions under which each of the solution methods is likely to be faster than the others and suggest efficient heuristic solutions that we recommend using when the problem is large in all dimensions. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

18.
Trade-in programs have been widely adopted to enhance repeat purchase from replacement customers. Considering that a market consists of replacement and new segments, we study the joint and dynamic decisions on the selling price of new product (hereafter, “selling price”) and the trade-in price involved in the program. By adopting a vertical product differentiation choice model, we investigate two scenarios in this paper. In the base model, the manufacturer has sufficiently large production capacity to fulfill the customer demand. We characterize the structural properties of the joint pricing decisions and compare them with the optimal pricing policy under regular selling. We further propose a semi-dynamic trade-in program, under which the new product is sold at a fixed price and the trade-in price can be adjusted dynamically. Numerical experiments are conducted to evaluate the performance of the dynamic and semi-dynamic trade-in programs. In an extended model, we consider the scenario in which the manufacturer stocks a batch of new products in the beginning of the selling horizon and the inventory cannot be replenished. Following a revenue management framework, we characterize the structural properties with respect to time period and inventory level of new products.  相似文献   

19.
Considering a supply chain with a supplier subject to yield uncertainty selling to a retailer facing stochastic demand, we find that commonly studied classical coordination contracts fail to coordinate both the supplier's production and the retailer's procurement decisions and achieve efficient performance. First, we study the vendor managed inventory (VMI) partnership. We find that a consignment VMI partnership coupled with a production cost subsidy achieves perfect coordination and a win‐win outcome; it is simple to implement and arbitrarily allocates total channel profit. The production cost subsidy optimally chosen through Nash bargaining analysis depends on the bargaining power of the supplier and the retailer. Further, motivated by the practice that sometimes the retailer and the supplier can arrange a “late order,” we also analyze the behavior of an advance‐purchase discount (APD) contract. We find that an APD with a revenue sharing contract can efficiently coordinate the supply chain as well as achieve flexible profit allocation. Finally, we explore which coordination contract works better for the supplier vs. the retailer. It is interesting to observe that Nash bargaining solutions for the two coordination contracts are equivalent. We further provide recommendations on the applications of these contracts. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 305–319, 2016  相似文献   

20.
In their recent article, Leng and Parlar (L&P) (2009) analyze information‐sharing alliances in a three‐level supply chain (consisting of a manufacturer, a distributor, and a retailer) that faces a nonstationary end demand. Supply chain members can share demand information, which reduces information distortion and thus decreases their inventory holding and shortage costs. We expand the results from L&P by considering dynamic (farsighted) stability concepts. We use two different allocation rules and show that under some reasonable assumptions there should always be some information sharing in this supply chain. We also identify conditions under which the retailer in a stable outcome shares his demand information with the distributor, with the manufacturer, or with both remaining supply chain members. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号