首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Following a review of the basic ideas in structural reliability, including signature‐based representation and preservation theorems for systems whose components have independent and identically distributed (i.i.d.) lifetimes, extensions that apply to the comparison of coherent systems of different sizes, and stochastic mixtures of them, are obtained. It is then shown that these results may be extended to vectors of exchangeable random lifetimes. In particular, for arbitrary systems of sizes m < n with exchangeable component lifetimes, it is shown that the distribution of an m‐component system's lifetime can be written as a mixture of the distributions of k‐out‐of‐n systems. When the system has n components, the vector of coefficients in this mixture representation is precisely the signature of the system defined in Samaniego, IEEE Trans Reliabil R–34 (1985) 69–72. These mixture representations are then used to obtain new stochastic ordering properties for coherent or mixed systems of different sizes. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

2.
Mean residual life is a useful dynamic characteristic to study reliability of a system. It has been widely considered in the literature not only for single unit systems but also for coherent systems. This article is concerned with the study of mean residual life for a coherent system that consists of multiple types of dependent components. In particular, the survival signature based generalized mixture representation is obtained for the survival function of a coherent system and it is used to evaluate the mean residual life function. Furthermore, two mean residual life functions under different conditional events on components’ lifetimes are also defined and studied.  相似文献   

3.
We give necessary and sufficient conditions based on signatures to obtain distribution‐free stochastic ordering properties for coherent systems with exchangeable components. Specifically, we consider the stochastic, the hazard (failure) rate, the reversed hazard rate, and the likelihood ratio orders. We apply these results to obtain stochastic ordering properties for all the coherent systems with five or less exchangeable components. Our results extend some preceding results. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

4.
In this paper, we consider a coherent system with n independent and identically distributed components under the condition that the system is monitored at time instances t1 and t2 (t1 < t2). First, various mixture representations for reliability function of the conditional residual lifetime of the coherent system are derived under different scenarios at times t1 and t2 (t1 < t2). Several stochastic comparisons between two systems are also made based on the proposed conditional random variables. Then, we consider the conditional residual lifetime of the functioning components of the system given that j components have failed at time t1 and the system has failed at time t2. Some stochastic comparisons on the proposed conditional residual lifetimes are investigated. Several illustrative graphs and examples are also provided.  相似文献   

5.
In this article, we carry out the stochastic comparison between coherent systems through the relative aging order when component lifetimes are independent and identically distributed. We make use of the signature to characterize the structure of coherent systems, and derive several sufficient conditions under which the compared systems with the common size can be ordered in the sense of relative aging. Specially, we present some scenarios wherein the better a coherent system is, the faster it ages. Moreover, we discuss the relative aging of dual systems as well. Several numerical examples are provided to illustrate the theoretical results. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 345–354, 2017  相似文献   

6.
The sequential order statistics (SOS) are a good way to model the lifetimes of the components in a system when the failure of a component at time t affects the performance of the working components at this age t. In this article, we study properties of the lifetimes of the coherent systems obtained using SOS. Specifically, we obtain a mixture representation based on the signature of the system. This representation is used to obtain stochastic comparisons. To get these comparisons, we obtain some ordering properties for the SOS, which in this context represent the lifetimes of k‐out‐of‐n systems. In particular, we show that they are not necessarily hazard rate ordered. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

7.
In this article, we study reliability properties of m‐consecutive‐k‐out‐of‐n: F systems with exchangeable components. We deduce exact formulae and recurrence relations for the signature of the system. Closed form expressions for the survival function and the lifetime distribution as a mixture of the distribution of order statistics are established as well. These representations facilitate the computation of several reliability characteristics of the system for a given exchangeable joint distribution or survival function. Finally, we provide signature‐based stochastic ordering results for the system's lifetime and investigate the IFR preservation property under the formulation of m‐consecutive‐k‐out‐of‐n: F systems. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

8.
We investigate the joint signature of m coherent systems, under the assumption that the components have independent and identically distributed lifetimes. The joint signature, for a particular ordering of failure times, is an m ‐dimensional matrix depending solely on the composition of the systems and independent of the underlying distribution function of the component lifetimes. The elements of the m ‐dimensional matrix are formulated based on the joint signatures of numerous series of parallel systems. The number of the joint signatures involved is an exponential function of the number of the minimal cut sets of each original system and may, therefore, be significantly large. We prove that although this number is typically large, a great number of the joint signatures are repeated, or removed by negative signs. We determine the maximum number of different joint signatures based on the number of systems and components. It is independent of the number of the minimal cut sets of each system and is polynomial in the number of components. Moreover, we consider all permutations of failure times and demonstrate that the results for one permutation can be of use for the others. Our theorems are applied to various examples. The main conclusion is that the joint signature can be computed much faster than expected.  相似文献   

9.
The notion of signature has been widely applied for the reliability evaluation of technical systems that consist of binary components. Multi‐state system modeling is also widely used for representing real life engineering systems whose components can have different performance levels. In this article, the concept of survival signature is generalized to a certain class of unrepairable homogeneous multi‐state systems with multi‐state components. With such a generalization, a representation for the survival function of the time spent by a system in a specific state or above is obtained. The findings of the article are illustrated for multi‐state consecutive‐k‐out‐of‐n system which perform its task at three different performance levels. The generalization of the concept of survival signature to a multi‐state system with multiple types of components is also presented. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 593–599, 2017  相似文献   

10.
We provide an expression for the Shannon entropy of mixed r‐out‐of‐ n systems when the lifetimes of the components are independent and identically distributed. The expression gives the system's entropy in terms of the system signature, the distribution and density functions of the lifetime model, and the information measures of the beta distribution. Bounds for the system's entropy are obtained by direct applications of the concavity of the entropy and the information inequality.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 202–206, 2014  相似文献   

11.
A coherent system of order n that consists two different types of dependent components is considered. The lifetimes of the components in each group are assumed to follow an exchangeable joint distribution, and the two random vectors, which represent the lifetimes of the components in each group are also assumed to be dependent. Under this particular form of dependence, all components are assumed to be dependent but they are categorized with respect to their reliability functions. Mixture representation is obtained for the survival function of the system's lifetime. Mixture representations are also obtained for the series and parallel systems consisting of disjoint modules such that all components of Type I are involved in one module (subsystem) and all components of Type II are placed in the other module. The theoretical results are illustrated with examples. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 388–394, 2015  相似文献   

12.
Many conventional models that characterize the reliability of multicomponent systems are developed on the premise that for a given system, the failures of its components are independent. Although this facilitates mathematical tractability, it may constitute a significant departure from what really takes place. In many real‐world applications, system components exhibit various degrees of interdependencies, which present significant challenges in predicting degradation performance and the remaining lifetimes of the individual components as well as the system at large. We focus on modeling the performance of interdependent components of networked systems that exhibit interactive degradation processes. Specifically, we focus on how the performance level of one component affects the degradation rates of other dependent components. This is achieved by using stochastic models to characterize how degradation‐based sensor signals associated with the components evolve over time. We consider “Continuous‐Type” component interactions that occur continuously over time. This type of degradation interaction exists in many applications, in which interdependencies occur on a continuum. We use a system of stochastic differential equations to capture such “Continuous‐Type” interaction. In addition, we utilize a Bayesian approach to update the proposed model using real‐time sensor signals observed in the field and provide more accurate estimation of component residual lifetimes. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 286–303, 2014  相似文献   

13.
This study addresses the allocation of matched active redundancy components to coherent systems with base components having statistically dependent lifetimes. We consider base component lifetimes and redundancy component lifetimes which are both stochastic arrangement monotone with respect to a pair of components given the lifetimes of the other components. In this context, allocating a more reliable redundancy component to the weaker base component is shown to incur a stochastically larger system lifetime. Numerical examples are presented as an illustration of the theoretical results.  相似文献   

14.
Reliability Economics is a field that can be defined as the collection of all problems in which there is tension between the performance of systems of interest and their cost. Given such a problem, the aim is to resolve the tension through an optimization process that identifies the system which maximizes some appropriate criterion function (e.g. expected lifetime per unit cost). In this paper, we focus on coherent systems of n independent and identically distributed (iid) components and mixtures thereof, and characterize both a system's performance and cost as functions of the system's signature vector (Samaniego, IEEE Trans Reliabil (1985) 69–72). For a given family of criterion functions, a variety of optimality results are obtained for systems of arbitrary order n. Approximations are developed and justified when the underlying component distribution is unknown. Assuming the availability of an auxiliary sample of N component failure times, the asymptotic theory of L‐estimators is adapted for the purpose of establishing the consistency and asymptotic normality of the proposed estimators of the expected ordered failure times of the n components of the systems under study. These results lead to the identification of ε‐optimal systems relative to the chosen criterion function. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

15.
This article studies coherent systems of heterogenous and statistically dependent components' lifetimes. We present a sufficient and necessary condition for a stochastically longer system lifetime resulted by allocating a single active redundancy. For exchangeable components' lifetimes, allocating the redundancy to the component with more minimal path sets is proved to produce a more reliable system, and for systems with stochastic arrangement increasing components' lifetimes and symmetric structure with respect to two components, allocating the redundancy to the weaker one brings forth a larger reliability. Several numerical examples are presented to illustrate the theoretical results as well. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 335–345, 2016  相似文献   

16.
As a generalization of k‐out‐of‐n:F and consecutive k‐out‐of‐n:F systems, the consecutive k‐within‐m‐out‐of‐n:F system consists of n linearly ordered components such that the system fails iff there are m consecutive components which include among them at least k failed components. In this article, the reliability properties of consecutive k‐within‐m‐out‐of‐n:F systems with exchangeable components are studied. The bounds and approximations for the survival function are provided. A Monte Carlo estimator of system signature is obtained and used to approximate survival function. The results are illustrated and numerics are provided for an exchangeable multivariate Pareto distribution. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

17.
A system of iid Bernoulli components is the starting point in the statistical theory of reliability. This simplification allows for the development of a rich, though elementary, theory for the structure of the system. Two representations play a prominent role in the study of structural reliability. One is the minimal path set representation and the other is the signature representation. By combining the two representations with the Gibbs measure for the state of components, one obtains terms that can be interpreted as the complexity of the system structure. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

18.
一种动态门限群签名方案的安全性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
门限群签名是群签名的推广,其中只有授权子集才能代表整个群体进行签名。一旦发生纠纷,签名成员的身份可以被追查出来。指出一种动态门限群签名方案有冗余,提出了针对该签名三种攻击。分析结果证明该门限群签名方案不具有防冒充性,不能抵抗合谋攻击,门限的动态更新、群成员注销和系统密钥更新也不安全。  相似文献   

19.
A new connection between the distribution of component failure times of a coherent system and (adaptive) progressively Type‐II censored order statistics is established. Utilizing this property, we develop inferential procedures when the data is given by all component failures until system failure in two scenarios: In the case of complete information, we assume that the failed component is also observed whereas in the case of incomplete information, we have only information about the failure times but not about the components which have failed. In the first setting, we show that inferential methods for adaptive progressively Type‐II censored data can directly be applied to the problem. For incomplete information, we face the problem that the corresponding censoring plan is not observed and that the available inferential procedures depend on the knowledge of the used censoring plan. To get estimates for distributional parameters, we propose maximum likelihood estimators which can be obtained by solving the likelihood equations directly or via an Expectation‐Maximization‐algorithm type procedure. For an exponential distribution, we discuss also a linear estimator to estimate the mean. Moreover, we establish exact distributions for some estimators in the exponential case which can be used, for example, to construct exact confidence intervals. The results are illustrated by a five component bridge system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 512–530, 2015  相似文献   

20.
This article concerns the effect of stochastic time delays in the operation of components upon system reliability for isolated impulse systems, for which component delays have hitherto been treated as deterministic. These are systems, such as automatic protective devices, which remain idle for most of their lives but which are required to respond with the utmost speed to input signals arising at arbitrary isolated time instants. System failure can arise from components failing to operate, or from being too slow to operate so that the systems operation is too slow to meet requirements. During operation components are usually subjected to greater stresses than during idling, so that it is assumed that components are subjected to increased failure tendencies during the time it takes them to perform their functions. The effect of stochastic time delays on the evaluation of systems reliability is considered, and a hierarchy of complexity associated with the physical nature of the delays in series and redundant configurations is exposed. Some simple exponential illustrations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号