首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze a supply chain of a manufacturer and two retailers, a permanent retailer who always stocks the manufacturer's product and an intermittent deal‐of‐the day retailer who sells the manufacturer's product online for a short time. We find that without a deal‐of‐the‐day (DOTD) retailer, it is suboptimal for the manufacturer to offer a quantity discount while it is optimal for the retailer to offer periodic price discounts to consumers. With the addition of a DOTD retailer, it is likely to be optimal for the manufacturer to offer a quantity discount. We show that even without market expansion, i.e., no exclusive DOTD retailer consumers, opening the intermittent channel can leave the permanent retailer no worse‐off while increasing the manufacturer's profit. We identify the regular and discounted wholesale prices and the threshold quantity at which the manufacturer should give the discount. We also identify the optimal retail prices. We find that opening the intermittent channel increases the profit of the manufacturer, is likely to decrease the average retail price and to increase sales, and may increase the permanent retailer's profit. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 505–528, 2016  相似文献   

2.
We consider a simple two‐stage supply chain with a single retailer facing i.i.d. demand and a single manufacturer with finite production capacity. We analyze the value of information sharing between the retailer and the manufacturer over a finite time horizon. In our model, the manufacturer receives demand information from the retailer even during time periods in which the retailer does not order. To analyze the impact of information sharing, we consider the following three strategies: (1) the retailer does not share demand information with the manufacturer; (2) the retailer does share demand information with the manufacturer and the manufacturer uses the optimal policy to schedule production; (3) the retailer shares demand information with the manufacturer and the manufacturer uses a greedy policy to schedule production. These strategies allow us to study the impact of information sharing on the manufacturer as a function of the production capacity, and the frequency and timing in which demand information is shared. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

3.
In this paper we consider the problem of minimizing the costs of outsourcing warranty repairs when failed items are dynamically routed to one of several service vendors. In our model, the manufacturer incurs a repair cost each time an item needs repair and also incurs a goodwill cost while an item is awaiting and undergoing repair. For a large manufacturer with annual warranty costs in the tens of millions of dollars, even a small relative cost reduction from the use of dynamic (rather than static) allocation may be practically significant. However, due to the size of the state space, the resulting dynamic programming problem is not exactly solvable in practice. Furthermore, standard routing heuristics, such as join‐the‐shortest‐queue, are simply not good enough to identify potential cost savings of any significance. We use two different approaches to develop effective, simply structured index policies for the dynamic allocation problem. The first uses dynamic programming policy improvement while the second deploys Whittle's proposal for restless bandits. The closed form indices concerned are new and the policies sufficiently close to optimal to provide cost savings over static allocation. All results of this paper are demonstrated using a simulation study. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

4.
In this article, we consider a generic electronic product that can be remanufactured or recycled at the end of its life cycle to generate new profit. We first describe the product return process and then present a customer segmentation model to capture consumers' different behaviors with respect to product return so that the retailer can work more effectively to increase the return volume. In regard to the collaboration between the retailer and the manufacturer, we explore a revenue‐sharing coordination mechanism for achieving a win‐win outcome. The optimality and sensitivity of the critical parameters in four strategies are obtained and examined both theoretically and numerically, which generate insights on how to manage an efficient consumer‐retailer‐manufacturer reverse supply chain, as well as on the feasibility of simplifying such a three‐stage chain structure. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

5.
In their recent article, Leng and Parlar (L&P) (2009) analyze information‐sharing alliances in a three‐level supply chain (consisting of a manufacturer, a distributor, and a retailer) that faces a nonstationary end demand. Supply chain members can share demand information, which reduces information distortion and thus decreases their inventory holding and shortage costs. We expand the results from L&P by considering dynamic (farsighted) stability concepts. We use two different allocation rules and show that under some reasonable assumptions there should always be some information sharing in this supply chain. We also identify conditions under which the retailer in a stable outcome shares his demand information with the distributor, with the manufacturer, or with both remaining supply chain members. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

6.
We consider a decentralized distribution channel where demand depends on the manufacturer‐chosen quality of the product and the selling effort chosen by the retailer. The cost of selling effort is private information for the retailer. We consider three different types of supply contracts in this article: price‐only contract where the manufacturer sets a wholesale price; fixed‐fee contract where manufacturer sells at marginal cost but charges a fixed (transfer) fee; and, general franchise contract where manufacturer sets a wholesale price and charges a fixed fee as well. The fixed‐fee and general franchise contracts are referred to as two‐part tariff contracts. For each contract type, we study different contract forms including individual, menu, and pooling contracts. In the analysis of the different types and forms of contracts, we show that the price only contract is dominated by the general franchise menu contract. However, the manufacturer may prefer to offer the fixed‐fee individual contract as compared to the general franchise contract when the retailer's reservation utility and degree of information asymmetry in costs are high. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

7.
We study contracts between a single retailer and multiple suppliers of two substitutable products, where suppliers have fixed capacities and present the retailer cost contracts for their supplies. After observing the contracts, the retailer decides how much capacity to purchase from each supplier, to maximize profits from the purchased capacity from the suppliers plus his possessed inventory (endowment). This is modeled as a noncooperative, nonzero‐sum game, where suppliers, or principals, move simultaneously as leaders and the retailer, the common agent, is the sole follower. We are interested in the form of the contracts in equilibrium, their effect on the total supply chain profit, and how the profit is split between the suppliers and the retailer. Under mild assumptions, we characterize the set of all equilibrium contracts and discuss all‐unit and marginal‐unit quantity discounts as special cases. We also show that the supply chain is coordinated in equilibrium with a unique profit split between the retailer and the suppliers. Each supplier's profit is equal to the marginal contribution of her capacity to supply chain profits in equilibrium. The retailer's profit is equal to the total revenue collected from the market minus the payments to the suppliers and the associated sales costs.  相似文献   

8.
The quick response (QR) system that can cope with demand volatility by shortening lead time has been well studied in the literature. Much of the existing literature assumes implicitly or explicitly that the manufacturers under QR can always meet the demand because the production capacity is always sufficient. However, when the order comes with a short lead time under QR, availability of the manufacturer's production capacity is not guaranteed. This motivates us to explore QR in supply chains with stochastic production capacity. Specifically, we study QR in a two-echelon supply chain with Bayesian demand information updating. We consider the situation where the manufacturer's production capacity under QR is uncertain. We first explore how stochastic production capacity affects supply chain decisions and QR implementation. We then incorporate the manufacturer's ability to expand capacity into the model. We explore how the manufacturer determines the optimal capacity expansion decision, and the value of such an ability to the supply chain and its agents. Finally, we extend the model to the two-stage two-ordering case and derive the optimal ordering policy by dynamic programming. We compare the single-ordering and two-ordering cases to generate additional managerial insights about how ordering flexibility affects QR when production capacity is stochastic. We also explore the transparent supply chain and find that our main results still hold.  相似文献   

9.
Many manufacturers sell their products through retailers and share the revenue with those retailers. Given this phenomenon, we build a stylized model to investigate the role of revenue sharing schemes in supply chain coordination and product variety decisions. In our model, a monopolistic manufacturer serves two segments of consumers, which are distinguished by their willingness to pay for quality. In the scenario with exogenous revenue sharing ratios, when the potential gain from serving the low segment is substantial (e.g., the low‐segment consumers' willingness to pay is high enough or the low segment takes a large enough proportion of the market), the retailer is better off abandoning the revenue sharing scheme. Moreover, when the potential gain from serving the low (high) segment is substantial enough, the manufacturer finds it profitable to offer a single product. Furthermore, when revenue sharing ratios are endogenous, we divide our analysis into two cases, depending on the methods of cooperation. When revenue sharing ratios are negotiated at the very beginning, the decentralized supply chain causes further distortion. This suggests that the central premise of revenue sharing—the coordination of supply chains—may be undermined if supply chain parties meticulously bargain over it.  相似文献   

10.
We consider supply chain coordination in which a manufacturer supplies some product to multiple heterogeneous retailers and wishes to coordinate the supply chain via wholesale price and holding cost subsidy. The retail price is either exogenous or endogenous. The market demand is described by the market share attraction model based on all retailers'shelf‐spaces and retail prices. We obtain optimal solutions for the centralized supply chain, where the optimal retail pricing is a modified version of the well‐known cost plus pricing strategy. We further get feasible contracts for the manufacturer to coordinate the hybrid and decentralized supply chains. The manufacturer can allocate the total profit free to himself and the retail market via the wholesale price when the retail price is exogenous, but otherwise he cannot. Finally, we point out that different characteristics of the retail market are due to different powers of the manufacturer, and the more power the manufacturer has, the simpler the contract to coordinate the chain will be. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

11.
We consider a two‐stage supply chain, in which multi‐items are shipped from a manufacturing facility or a central warehouse to a downstream retailer that faces deterministic external demand for each of the items over a finite planning horizon. The items are shipped through identical capacitated vehicles, each incurring a fixed cost per trip. In addition, there exist item‐dependent variable shipping costs and inventory holding costs at the retailer for items stored at the end of the period; these costs are constant over time. The sum of all costs must be minimized while satisfying the external demand without backlogging. In this paper we develop a search algorithm to solve the problem optimally. Our search algorithm, although exponential in the worst case, is very efficient empirically due to new properties of the optimal solution that we found, which allow us to restrict the number of solutions examined. Second, we perform a computational study that compares the empirical running time of our search methods to other available exact solution methods to the problem. Finally, we characterize the conditions under which each of the solution methods is likely to be faster than the others and suggest efficient heuristic solutions that we recommend using when the problem is large in all dimensions. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

12.
This note studies the optimal inspection policies in a supply chain in which a manufacturer purchases components from a supplier but has no direct control of component quality. The manufacturer uses an inspection policy and a damage cost sharing contract to encourage the supplier to improve the component quality. We find that all‐or‐none inspection policies are optimal for the manufacturer if the supplier's share of the damage cost is larger than a threshold; otherwise, the manufacturer should inspect a fraction of a batch. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

13.
In some industries such as automotive, production costs are largely fixed and therefore maximizing revenue is the main objective. Manufacturers use promotions directed to the end customers and/or retailers in their distribution channels to increase sales and market share. We study a game theoretical model to examine the impact of “retailer incentive” and “customer rebate” promotions on the manufacturer's pricing and the retailer's ordering/sales decisions. The main tradeoff is that customer rebates are given to every customer, while the use of retailer incentives is controlled by the retailer. We consider several models with different demand characteristics and information asymmetry between the manufacturer and a price discriminating retailer, and we determine which promotion would benefit the manufacturer under which market conditions. When demand is deterministic, we find that retailer incentives increase the manufacturer's profits (and sales) while customer rebates do not unless they lead to market expansion. When the uncertainty in demand (“market potential”) is high, a customer rebate can be more profitable than the retailer incentive for the manufacturer. With numerical examples, we provide additional insights on the profit gains by the right choice of promotion.© 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

14.
Considering a supply chain with a supplier subject to yield uncertainty selling to a retailer facing stochastic demand, we find that commonly studied classical coordination contracts fail to coordinate both the supplier's production and the retailer's procurement decisions and achieve efficient performance. First, we study the vendor managed inventory (VMI) partnership. We find that a consignment VMI partnership coupled with a production cost subsidy achieves perfect coordination and a win‐win outcome; it is simple to implement and arbitrarily allocates total channel profit. The production cost subsidy optimally chosen through Nash bargaining analysis depends on the bargaining power of the supplier and the retailer. Further, motivated by the practice that sometimes the retailer and the supplier can arrange a “late order,” we also analyze the behavior of an advance‐purchase discount (APD) contract. We find that an APD with a revenue sharing contract can efficiently coordinate the supply chain as well as achieve flexible profit allocation. Finally, we explore which coordination contract works better for the supplier vs. the retailer. It is interesting to observe that Nash bargaining solutions for the two coordination contracts are equivalent. We further provide recommendations on the applications of these contracts. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 305–319, 2016  相似文献   

15.
We consider a generalization of the well‐known generalized assignment problem (GAP) over discrete time periods encompassed within a finite planning horizon. The resulting model, MultiGAP, addresses the assignment of tasks to agents within each time period, with the attendant single‐period assignment costs and agent‐capacity constraint requirements, in conjunction with transition costs arising between any two consecutive periods in which a task is reassigned to a different agent. As is the case for its single‐period antecedent, MultiGAP offers a robust tool for modeling a wide range of capacity planning problems occurring within supply chain management. We provide two formulations for MultiGAP and establish that the second (alternative) formulation provides a tighter bound. We define a Lagrangian relaxation‐based heuristic as well as a branch‐and‐bound algorithm for MultiGAP. Computational experience with the heuristic and branch‐and‐bound algorithm on over 2500 test problems is reported. The Lagrangian heuristic consistently generates high‐quality and in many cases near‐optimal solutions. The branch‐and‐bound algorithm is also seen to constitute an effective means for solving to optimality MultiGAP problems of reasonable size. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

16.
In this paper we consider an inventory model in which the retailer does not know the exact distribution of demand and thus must use some observed demand data to forecast demand. We present an extension of the basic newsvendor model that allows us to quantify the value of the observed demand data and the impact of suboptimal forecasting on the expected costs at the retailer. We demonstrate the approach through an example in which the retailer employs a commonly used forecasting technique, exponential smoothing. The model is also used to quantify the value of information and information sharing for a decoupled supply chain in which both the retailer and the manufacturer must forecast demand. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 388–411, 2003  相似文献   

17.
In this article, we consider a classic dynamic inventory control problem of a self‐financing retailer who periodically replenishes its stock from a supplier and sells it to the market. The replenishment decisions of the retailer are constrained by cash flow, which is updated periodically following purchasing and sales in each period. Excess demand in each period is lost when insufficient inventory is in stock. The retailer's objective is to maximize its expected terminal wealth at the end of the planning horizon. We characterize the optimal inventory control policy and present a simple algorithm for computing the optimal policies for each period. Conditions are identified under which the optimal control policies are identical across periods. We also present comparative statics results on the optimal control policy. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

18.
We examine the behavior of a manufacturer and a retailer in a decentralized supply chain under price‐dependent, stochastic demand. We model a retail fixed markup (RFM) policy, which can arise as a form of vertically restrictive pricing in a supply chain, and we examine its effect on supply chain performance. We prove the existence of the optimal pricing and replenishment policies when demand has a linear additive form and the distribution of the uncertainty component has a nondecreasing failure rate. We numerically compare the relative performance of RFM to a price‐only contract and we find that RFM results in greater profit for the supply chain than the price‐only contract in a variety of scenarios. We find that RFM can lead to Pareto‐improving solutions where both the supplier and the retailer earn more profit than under a price‐only contract. Finally, we compare RFM to a buyback contract and explore the implications of allowing the fixed markup parameter to be endogenous to the model. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

19.
This paper considers a logistics system modelled as a transportation problem with a linear cost structure and lower bounds on supply from each origin and to each destination. We provide an algorithm for obtaining the growth path of such a system, i. e., determining the optimum shipment patterns and supply levels from origins and to destinations, when the total volume handled in the system is increased. Extensions of the procedure for the case when the costs of supplying are convex and piecewise linear and for solving transportation problems that are not in “standard form” are discussed. A procedure is provided for determining optimal plant capacities when the market requirements have prespecified growth rates. A goal programming growth model where the minimum requirements are treated as goals rather than as absolute requirements is also formulated.  相似文献   

20.
This paper studies a scheduling problem arising in a beef distribution system where pallets of various types of beef products in the warehouse are first depalletized and then individual cases are loaded via conveyors to the trucks which deliver beef products to various customers. Given each customer's demand for each type of beef, the problem is to find a depalletizing and truck loading schedule that fills all the demands at a minimum total cost. We first show that the general problem where there are multiple trucks and each truck covers multiple customers is strongly NP‐hard. Then we propose polynomial‐time algorithms for the case where there are multiple trucks, each covering only one customer, and the case where there is only one truck covering multiple customers. We also develop an optimal dynamic programming algorithm and a heuristic for solving the general problem. By comparing to the optimal solutions generated by the dynamic programming algorithm, the heuristic is shown to be capable of generating near optimal solutions quickly. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号