首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a generalization of the well‐known generalized assignment problem (GAP) over discrete time periods encompassed within a finite planning horizon. The resulting model, MultiGAP, addresses the assignment of tasks to agents within each time period, with the attendant single‐period assignment costs and agent‐capacity constraint requirements, in conjunction with transition costs arising between any two consecutive periods in which a task is reassigned to a different agent. As is the case for its single‐period antecedent, MultiGAP offers a robust tool for modeling a wide range of capacity planning problems occurring within supply chain management. We provide two formulations for MultiGAP and establish that the second (alternative) formulation provides a tighter bound. We define a Lagrangian relaxation‐based heuristic as well as a branch‐and‐bound algorithm for MultiGAP. Computational experience with the heuristic and branch‐and‐bound algorithm on over 2500 test problems is reported. The Lagrangian heuristic consistently generates high‐quality and in many cases near‐optimal solutions. The branch‐and‐bound algorithm is also seen to constitute an effective means for solving to optimality MultiGAP problems of reasonable size. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

2.
Motivated by some practical applications, we study a new integrated loading and transportation scheduling problem. Given a set of jobs, a single crane is available to load jobs, one by one, onto semitrailers with a given capacity. Loaded semitrailers are assigned to tractors for transportation tasks. Subject to limited resources (crane, semitrailers, and tractors), the problem is to determine (1) an assignment of jobs to semitrailers for loading tasks, (2) a sequence for the crane to load jobs onto semitrailers, (3) an assignment of loaded semitrailers to tractors for transportation tasks, and (4) a transportation schedule of assigned tractors such that the completion time of the last transportation task is minimized. We first formulate the problem as a mixed integer linear programming model (MILPM) and prove that the problem is strongly NP‐hard. Then, optimality properties are provided which are useful in establishing an improved MILPM and designing solution algorithms. We develop a constructive heuristic, two LP‐based heuristics, and a recovering beam search heuristic to solve this problem. An improved procedure for solutions by heuristics is also presented. Furthermore, two branch‐and‐bound (B&B) algorithms with two different lower bounds are developed to solve the problem to optimality. Finally, computational experiments using both real data and randomly generated data demonstrate that our heuristics are highly efficient and effective. In terms of computational time and the number of instances solved to optimality in a time limit, the B&B algorithms are better than solving the MILPM. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 416–433, 2015  相似文献   

3.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

4.
One way of achieving the increased levels of system reliability and availability demanded by critical computer-based control systems is through the use of fault-tolerant distributed computer systems. This article addresses the problem of allocating a set of m tasks among a set of n processors in a manner that will satisfy various task assignment, system capacity, and task scheduling constraints while balancing the workload across processors. We discuss problem background, problem formulation, and a known heuristic procedure for the problem. A new solution-improving heuristic procedure is introduced, and computational experience with the heuristics is presented. With only a modest increase in the amount of computational effort, the new procedure is demonstrated to improve dramatically solution quality as well as obtain near-optimal solutions to the test problems.  相似文献   

5.
In the classical EPQ model with continuous and constant demand, holding and setup costs are minimized when the production rate is no larger than the demand rate. However, the situation may change when demand is lumpy. We consider a firm that produces multiple products, each having a unique lumpy demand pattern. The decision involves determining both the lot size for each product and the allocation of resources for production rate improvements among the products. We find that each product's optimal production policy will take on only one of two forms: either continuous production or lot‐for‐lot production. The problem is then formulated as a nonlinear nonsmooth knapsack problem among products determined to be candidates for resource allocation. A heuristic procedure is developed to determine allocation amounts. The procedure decomposes the problem into a mixed integer program and a nonlinear convex resource allocation problem. Numerical tests suggest that the heuristic performs very well on average compared to the optimal solution. Both the model and the heuristic procedure can be extended to allow the company to simultaneously alter both the production rates and the incoming demand lot sizes through quantity discounts. Extensions can also be made to address the case where a single investment increases the production rate of multiple products. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

6.
In this paper we propose some non‐greedy heuristics and develop an Augmented‐Neural‐Network (AugNN) formulation for solving the classical open‐shop scheduling problem (OSSP). AugNN is a neural network based meta‐heuristic approach that allows integration of domain‐specific knowledge. The OSSP is framed as a neural network with multiple layers of jobs and machines. Input, output and activation functions are designed to enforce the problem constraints and embed known heuristics to generate a good feasible solution fast. Suitable learning strategies are applied to obtain better neighborhood solutions iteratively. The new heuristics and the AugNN formulation are tested on several benchmark problem instances in the literature and on some new problem instances generated in this study. The results are very competitive with other meta‐heuristic approaches, both in terms of solution quality and computational times. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

7.
8.
We consider a container terminal discharging containers from a ship and locating them in the terminal yard. Each container has a number of potential locations in the yard where it can be stored. Containers are moved from the ship to the yard using a fleet of vehicles, each of which can carry one container at a time. The problem is to assign each container to a yard location and dispatch vehicles to the containers so as to minimize the time it takes to download all the containers from the ship. We show that the problem is NP‐hard and develop a heuristic algorithm based on formulating the problem as an assignment problem. The effectiveness of the heuristic is analyzed from both worst‐case and computational points of view. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 363–385, 2001  相似文献   

9.
The bounded interval generalized assignment model is a “many-for-one” assignment model. Each task must be assigned to exactly one agent; however, each agent can be assigned multiple tasks as long as the agent resource consumed by performing the assigned tasks falls within a specified interval. The bounded interval generalized assignment model is formulated, and an algorithm for its solution is developed. Algorithms for the bounded interval versions of the semiassignment model and sources-to-uses transportation model are also discussed.  相似文献   

10.
We investigate a single‐machine scheduling problem for which both the job processing times and due windows are decision variables to be determined by the decision maker. The job processing times are controllable as a linear or convex function of the amount of a common continuously divisible resource allocated to the jobs, where the resource allocated to the jobs can be used in discrete or continuous quantities. We use the common flow allowances due window assignment method to assign due windows to the jobs. We consider two performance criteria: (i) the total weighted number of early and tardy jobs plus the weighted due window assignment cost, and (ii) the resource consumption cost. For each resource consumption function, the objective is to minimize the first criterion, while keeping the value of the second criterion no greater than a given limit. We analyze the computational complexity, devise pseudo‐polynomial dynamic programming solution algorithms, and provide fully polynomial‐time approximation schemes and an enhanced volume algorithm to find high‐quality solutions quickly for the considered problems. We conduct extensive numerical studies to assess the performance of the algorithms. The computational results show that the proposed algorithms are very efficient in finding optimal or near‐optimal solutions. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 41–63, 2017  相似文献   

11.
Proposed is a Heuristic Network (HN) Procedure for balancing assembly lines. The procedure uses simple heuristic rules to generate a network which is then traversed using a shortest route algorithm to obtain a heuristic solution. The advantages of the HN Procedure are: a) it generally yields better solutions than those obtained by application of the heuristics, and b) sensitivity analysis with different values of cycle time is possible without having to regenerate the network. The rationale for its effectiveness and its application to problems with paralleling are presented. Computational experience with the procedure on up to 50 task test problems is provided.  相似文献   

12.
This article proposes two dual‐ascent algorithms and uses each in combination with a primal drop heuristic embedded within a branch and bound framework to solve the uncapacitated production assembly distribution system (i.e., supply chain) design problem, which is formulated as a mixed integer program. Computational results indicate that one approach, which combines primal drop and dual‐ascent heuristics, can solve instances within reasonable time and prescribes solutions with gaps between the primal and dual solution values that are less than 0.15%, an efficacy suiting it for actual large‐scale applications. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

13.
We consider the problem of sequencing jobs on a single machine while minimizing a nondecreasing function of two criteria. We develop a heuristic procedure that quickly finds a good solution for bicriteria scheduling. The procedure is based on using several arcs in the criterion space that are representative of the possible locations of nondominated solutions. By sampling a small number of points on these arcs, a promising point is identified in the criterion space for each arc. An efficient sequence in the neighborhood of each of the promising points is found and the best of these efficient sequences is selected as the heuristic solution. We implement the procedure for two different bicriteria scheduling problems: (i) minimizing total flowtime and maximum tardiness and (ii) minimizing total flowtime and maximum earliness. The computational experience on a wide variety of problem instances show that the heuristic approach is very robust and yields good solutions. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 777–789, 1999  相似文献   

14.
In this study, we consider a bicriteria multiresource generalized assignment problem. Our criteria are the total assignment load and maximum assignment load over all agents. We aim to generate all nondominated objective vectors and the corresponding efficient solutions. We propose several lower and upper bounds and use them in our optimization and heuristic algorithms. The computational results have shown the satisfactory behaviors of our approaches. © 2014 Wiley Periodicals, Inc. Naval Research Logistics, 61: 621–636, 2014  相似文献   

15.
The loading problem involves the optimal allocation of n objects, each having a specified weight and value, to m boxes, each of specified capacity. While special cases of these problems can be solved with relative ease, the general problem having variable item weights and box sizes can become very difficult to solve. This paper presents a heuristic procedure for solving large loading problems of the more general type. The procedure uses a surrogate procedure for reducing the original problem to a simpler knapsack problem, the solution of which is then employed in searching for feasible solutions to the original problem. The procedure is easy to apply, and is capable of identifying optimal solutions if they are found.  相似文献   

16.
In this article, we define a scheduling/packing problem called the Job Splitting Problem, motivated by the practices in the printing industry. There are n types of items to be produced on an m‐slot machine. A particular assignment of the types to the slots is called a “run” configuration and requires a setup cost. Once a run begins, the production continues according to that configuration and the “length” of the run represents the quantity produced in each slot during that run. For each unit of production in excess of demand, there is a waste cost. Our goal is to construct a production plan, i.e., a set of runs, such that the total setup and waste cost is minimized. We show that the problem is strongly NP‐hard and propose two integer programming formulations, several preprocessing steps, and two heuristics. We also provide a worst‐case bound for one of the heuristics. Extensive tests on real‐world and randomly generated instances show that the heuristics are both fast and effective, finding near‐optimal solutions. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

17.
We address the capacitated lot‐sizing and scheduling problem with setup times, setup carry‐over, back‐orders, and parallel machines as it appears in a semiconductor assembly facility. The problem can be formulated as an extension of the capacitated lot‐sizing problem with linked lot‐sizes (CLSPL). We present a mixed integer (MIP) formulation of the problem and a new solution procedure. The solution procedure is based on a novel “aggregate model,” which uses integer instead of binary variables. The model is embedded in a period‐by‐period heuristic and is solved to optimality or near‐optimality in each iteration using standard procedures (CPLEX). A subsequent scheduling routine loads and sequences the products on the parallel machines. Six variants of the heuristic are presented and tested in an extensive computational study. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

18.
The importance of subset selection in multiple regression has been recognized for more than 40 years and, not surprisingly, a variety of exact and heuristic procedures have been proposed for choosing subsets of variables. In the case of polynomial regression, the subset selection problem is complicated by two issues: (1) the substantial growth in the number of candidate predictors, and (2) the desire to obtain hierarchically well‐formulated subsets that facilitate proper interpretation of the regression parameter estimates. The first of these issues creates the need for heuristic methods that can provide solutions in reasonable computation time; whereas the second requires innovative neighborhood search approaches that accommodate the hierarchical constraints. We developed tabu search and variable neighborhood search heuristics for subset selection in polynomial regression. These heuristics are applied to a classic data set from the literature and, subsequently, evaluated in a simulation study using synthetic data sets. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

19.
In this article, we address a stochastic generalized assignment machine scheduling problem in which the processing times of jobs are assumed to be random variables. We develop a branch‐and‐price (B&P) approach for solving this problem wherein the pricing problem is separable with respect to each machine, and has the structure of a multidimensional knapsack problem. In addition, we explore two other extensions of this method—one that utilizes a dual‐stabilization technique and another that incorporates an advanced‐start procedure to obtain an initial feasible solution. We compare the performance of these methods with that of the branch‐and‐cut (B&C) method within CPLEX. Our results show that all B&P‐based approaches perform better than the B&C method, with the best performance obtained for the B&P procedure that includes both the extensions aforementioned. We also utilize a Monte Carlo method within the B&P scheme, which affords the use of a small subset of scenarios at a time to estimate the “true” optimal objective function value. Our experimental investigation reveals that this approach readily yields solutions lying within 5% of optimality, while providing more than a 10‐fold savings in CPU times in comparison with the best of the other proposed B&P procedures. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 131–143, 2014  相似文献   

20.
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding), and intermediate (work‐in‐process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two different, but closely related, Dantzig‐Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig‐Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two different lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near‐optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with different types of strongly ????‐hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near‐optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号