首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This article deals with supply chain systems in which lateral transshipments are allowed. For a system with two retailers facing stochastic demand, we relax the assumption of negligible fixed transshipment costs, thus, extending existing results for the single‐item case and introducing a new model with multiple items. The goal is to determine optimal transshipment and replenishment policies, such that the total centralized expected profit of both retailers is maximized. For the single‐item problem with fixed transshipment costs, we develop optimality conditions, analyze the expected profit function, and identify the optimal solution. We extend our analysis to multiple items with joint fixed transshipment costs, a problem that has not been investigated previously in the literature, and show how the optimality conditions may be extended for any number of items. Due to the complexity involved in solving these conditions, we suggest a simple heuristic based on the single‐item results. Finally, we conduct a numerical study that provides managerial insights on the solutions obtained in various settings and demonstrates that the suggested heuristic performs very well. © 2014 Wiley Periodicals, Inc. Naval Research Logistics, 61: 637–664, 2014  相似文献   

2.
We study an infinite horizon periodic stochastic inventory system consisting of retail outlets and customers located on a homogenous line segment. In each period, the total demand, generated by the customers on the line, is normally distributed. To better match supply and demand, we incorporate lateral transshipments. We propose a compact model in which the strategic decisions—the number and locations of retail outlets—are determined simultaneously with the operational decisions—the inventory replenishment and transshipment quantities. We find the optimal balance between the risk‐pooling considerations, which drive down the optimal number of retail outlets, and lateral transshipments, which drive up the optimal number of retail outlets. We also explore the sensitivity of the optimal number of retail outlets to various problem parameters. This article presents a novel way of integrating lateral transshipments in the context of an inventory‐location model. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

3.
We consider preventive transshipments between two stores in a decentralized system with two demand subperiods. Replenishment orders are made before the first subperiod, and the stores may make transshipments to one another between the subperiods. We prove that the transshipment decision has a dominant strategy, called a control‐band conserving transfer policy, under which each store chooses a quantity to transship in or out that will keep its second‐subperiod starting inventory level within a range called a control band. We prove that the optimal replenishment policy is a threshold policy in which the threshold depends on the capacity level at the other store. Finally, we prove that there does not exist a transfer price that coordinates the decentralized supply chain. Our research also explains many of the differences between preventive and emergency transshipments, including differences in the optimal transfer policies and the existence or nonexistence of transfer prices that coordinate the system. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

4.
We address the problem of inventory management in a two‐location inventory system, in which the transshipments are carried out as means of emergency or alternative supply after demand has been realized. This model differs from previous ones as regards its replenishment costs structure, in which nonnegligible fixed replenishment costs and a joint replenishment cost are considered. The single period planning horizon is analyzed, with the form and several properties of the optimal replenishment and transshipment policies developed, discussed and illustrated. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 525–547, 1999  相似文献   

5.
A major challenge in making supply meet demand is to coordinate transshipments across the supply chain to reduce costs and increase service levels in the face of demand fluctuations, short lead times, warehouse limitations, and transportation and inventory costs. In particular, transshipment through crossdocks, where just‐in‐time objectives prevail, requires precise scheduling between suppliers, crossdocks, and customers. In this work, we study the transshipment problem with supplier and customer time windows where flow is constrained by transportation schedules and warehouse capacities. Transportation is provided by fixed or flexible schedules and lot‐sizing is dealt with through multiple shipments. We develop polynomial‐time algorithms or, otherwise, provide the complexity of the problems studied. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

6.
The multilocation replenishment and transshipment problem is concerned with several retailers facing random demand for the same item at distinct markets, that may use transshipments to eliminate excess inventory/shortages after demand realization. When the system is decentralized so that each retailer operates to maximize their own profit, there are incentive problems that prevent coordination. These problems arise even with two retailers who may pay each other for transshipped units. We propose a new mechanism based on a transshipment fund, which is the first to coordinate the system, in a fully noncooperative setting, for all instances of two retailers as well as all instances of any number of retailers. Moreover, our mechanism strongly coordinates the system, i.e., achieves coordination as the unique equilibrium. The computation and information requirements of this mechanism are realistic and relatively modest. We also present necessary and sufficient conditions for coordination and prove they are always satisfied with our mechanism. Numerical examples illustrate some of the properties underlying this mechanism for two retailers. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

7.
This paper develops an inventory model that determines replenishment strategies for buyers facing situations in which sellers offer price‐discounting campaigns at random times as a way to drive sales or clear excess inventory. Specifically, the model deals with the inventory of a single item that is maintained to meet a constant demand over time. The item can be purchased at two different prices denoted high and low. We assume that the low price goes into effect at random points in time following an exponential distribution and lasts for a random length of time following another exponential distribution. We highlight a replenishment strategy that will lead to the lowest inventory holding and ordering costs possible. This strategy is to replenish inventory only when current levels are below a certain threshold when the low price is offered and the replenishment is to a higher order‐up‐to level than the one currently in use when inventory depletes to zero and the price is high. Our analysis provides new insight into the behavior of the optimal replenishment strategy in response to changes in the ratio of purchase prices together with changes in the ratio of the duration of a low‐price period to that of a high‐price period. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

8.
We develop a competitive pricing model which combines the complexity of time‐varying demand and cost functions and that of scale economies arising from dynamic lot sizing costs. Each firm can replenish inventory in each of the T periods into which the planning horizon is partitioned. Fixed as well as variable procurement costs are incurred for each procurement order, along with inventory carrying costs. Each firm adopts, at the beginning of the planning horizon, a (single) price to be employed throughout the horizon. On the basis of each period's system of demand equations, these prices determine a time series of demands for each firm, which needs to service them with an optimal corresponding dynamic lot sizing plan. We establish the existence of a price equilibrium and associated optimal dynamic lotsizing plans, under mild conditions. We also design efficient procedures to compute the equilibrium prices and dynamic lotsizing plans.© 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

9.
In many applications, managers face the problem of replenishing and selling products during a finite time horizon. We investigate the problem of making dynamic and joint decisions on product replenishment and selling in order to improve profit. We consider a backlog scenario in which penalty cost (resulting from fulfillment delay) and accommodation cost (resulting from shortage at the end of the selling horizon) are incurred. Based on continuous‐time and discrete‐state dynamic programming, we study the optimal joint decisions and characterize their structural properties. We establish an upper bound for the optimal expected profit and develop a fluid policy by resorting to the deterministic version of the problem (ie, the fluid problem). The fluid policy is shown to be asymptotically optimal for the original stochastic problem when the problem size is sufficiently large. The static nature of the fluid policy and its lack of flexibility in matching supply with demand motivate us to develop a “target‐inventory” heuristic, which is shown, numerically, to be a significant improvement over the fluid policy. Scenarios with discrete feasible sets and lost‐sales are also discussed in this article.  相似文献   

10.
We consider a problem of optimal division of stock between a logistic depot and several geographically dispersed bases, in a two‐echelon supply chain. The objective is to minimize the total cost of inventory shipment, taking into account direct shipments between the depot and the bases, and lateral transshipments between bases. We prove the convexity of the objective function and suggest a procedure for identifying the optimal solution. Small‐dimensional cases, as well as a limit case in which the number of bases tends to infinity, are solved analytically for arbitrary distributions of demand. For a general case, an approximation is suggested. We show that, in many practical cases, partial pooling is the best strategy, and large proportions of the inventory should be kept at the bases rather than at the depot. The analytical and numerical examples show that complete pooling is obtained only as a limit case in which the transshipment cost tends to infinity. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 3–18, 2017  相似文献   

11.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

12.
We consider a setting in which inventory plays both promotional and service roles; that is, higher inventories not only improve service levels but also stimulate demand by serving as a promotional tool (e.g., as the result of advertising effect by the enhanced product visibility). Specifically, we study the periodic‐review inventory systems in which the demand in each period is uncertain but increases with the inventory level. We investigate the multiperiod model with normal and expediting orders in each period, that is, any shortage will be met through emergency replenishment. Such a model takes the lost sales model as a special case. For the cases without and with fixed order costs, the optimal inventory replenishment policy is shown to be of the base‐stock type and of the (s,S) type, respectively. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

13.
We consider a finite horizon periodic review, single product inventory system with a fixed setup cost and two stochastic demand classes that differ in their backordering costs. In each period, one must decide whether and how much to order, and how much demand of the lower class should be satisfied. We show that the optimal ordering policy can be characterized as a state dependent (s,S) policy, and the rationing structure is partially obtained based on the subconvexity of the cost function. We then propose a simple heuristic rationing policy, which is easy to implement and close to optimal for intensive numerical examples. We further study the case when the first demand class is deterministic and must be satisfied immediately. We show the optimality of the state dependent (s,S) ordering policy, and obtain additional rationing structural properties. Based on these properties, the optimal ordering and rationing policy for any state can be generated by finding the optimal policy of only a finite set of states, and for each state in this set, the optimal policy is obtained simply by choosing a policy from at most two alternatives. An efficient algorithm is then proposed. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

14.
We consider several independent decision makers who stock expensive, low‐demand spare parts for their high‐tech machines. They can collaborate by full pooling of their inventories via free transshipments. We examine the stability of such pooling arrangements, and we address the issue of fairly distributing the collective holding and downtime costs over the participants, by applying concepts from cooperative game theory. We consider two settings: one where each party maintains a predetermined stocking level and one where base stock levels are optimized. For the setting with fixed stocking levels, we unravel the possibly conflicting effects of implementing a full pooling arrangement and study these effects separately to establish intuitive conditions for existence of a stable cost allocation. For the setting with optimized stocking levels, we provide a simple proportional rule that accomplishes a population monotonic allocation scheme if downtime costs are symmetric among participants. Although our whole analysis is motivated by spare parts applications, all results are also applicable to other pooled resource systems of which the steady‐state behavior is equivalent to that of an Erlang loss system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

15.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   

16.
We consider in this paper the coordinated replenishment dynamic lot‐sizing problem when quantity discounts are offered. In addition to the coordination required due to the presence of major and minor setup costs, a separate element of coordination made possible by the offer of quantity discounts needs to be considered as well. The mathematical programming formulation for the incremental discount version of the extended problem and a tighter reformulation of the problem based on variable redefinition are provided. These then serve as the basis for the development of a primal‐dual based approach that yields a strong lower bound for our problem. This lower bound is then used in a branch and bound scheme to find an optimal solution to the problem. Computational results for this optimal solution procedure are reported in the paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 686–695, 2000  相似文献   

17.
We incorporate strategic customer waiting behavior in the classical economic order quantity (EOQ) setting. The seller determines not only the timing and quantities of the inventory replenishment, but also the selling prices over time. While similar ideas of market segmentation and intertemporal price discrimination can be carried over from the travel industries to other industries, inventory replenishment considerations common to retail outlets and supermarkets introduce additional features to the optimal pricing scheme. Specifically, our study provides concrete managerial recommendations that are against the conventional wisdom on “everyday low price” (EDLP) versus “high-low pricing” (Hi-Lo). We show that in the presence of inventory costs and strategic customers, Hi-Lo instead of EDLP is optimal when customers have homogeneous valuations. This result suggests that because of strategic customer behavior, the seller obtains a new source of flexibility—the ability to induce customers to wait—which always leads to a strictly positive increase of the seller's profit. Moreover, the optimal inventory policy may feature a dry period with zero inventory, but this period does not necessarily result in a loss of sales as customers strategically wait for the upcoming promotion. Furthermore, we derive the solution approach for the optimal policy under heterogeneous customer valuation setting. Under the optimal policy, the replenishments and price promotions are synchronized, and the seller adopts high selling prices when the inventory level is low and plans a discontinuous price discount at the replenishment point when inventory is the highest.  相似文献   

18.
While there has been significant previous literature on inventory transshipment, most research has focused on the dealers' demand filling decision (when to fill transshipment requests from other dealers), ignoring the requesting decision (when to send transshipment requests to other dealers). In this paper we develop optimal inventory transshipment policies that incorporate both types of decisions. We consider a decentralized system in which the dealers are independent of the manufacturer and of each other. We first study a network consisting of a very large number of dealers. We prove that the optimal inventory and transshipment decisions for an individual dealer are controlled by threshold rationing and requesting levels. Then, in order to study the impact of transshipment among independent dealers in a smaller dealer network, we consider a decentralized two‐dealer network and use a game theoretic approach to characterize the equilibrium inventory strategies of the individual dealers. An extensive numerical study highlights the impact of the requesting decision on the dealers' equilibrium behavior in a decentralized setting. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

19.
给出了纯方位系统在目标任意变速变向运动或不动情况下,目标定位与跟踪中的本载体确定性控制最优和次优轨线方程以及其最优轨线。这一结果是完全用解析方法得到的。  相似文献   

20.
We consider the problem of efficiently scheduling deliveries by an uncapacitated courier from a central location under online arrivals. We consider both adversary‐controlled and Poisson arrival processes. In the adversarial setting we provide a randomized (3βΔ/2δ ? 1) ‐competitive algorithm, where β is the approximation ratio of the traveling salesman problem, δ is the minimum distance between the central location and any customer, and Δ is the length of the optimal traveling salesman tour overall customer locations and the central location. We provide instances showing that this analysis is tight. We also prove a 1 + 0.271Δ/δ lower‐bound on the competitive ratio of any algorithm in this setting. In the Poisson setting, we relax our assumption of deterministic travel times by assuming that travel times are distributed with a mean equal to the excursion length. We prove that optimal policies in this setting follow a threshold structure and describe this structure. For the half‐line metric space we bound the performance of the randomized algorithm in the Poisson setting, and show through numerical experiments that the performance of the algorithm is often much better than this bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号