首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a setting with a single type of resource and with several players, each associated with a single resource (of this type). Unavailability of these resources comes unexpectedly and with player‐specific costs. Players can cooperate by reallocating the available resources to the ones that need the resources most and let those who suffer the least absorb all the costs. We address the cost savings allocation problem with concepts of cooperative game theory. In particular, we formulate a probabilistic resource pooling game and study them on various properties. We show that these games are not necessarily convex, do have non‐empty cores, and are totally balanced. The latter two are shown via an interesting relationship with Böhm‐Bawerk horse market games. Next, we present an intuitive class of allocation rules for which the resulting allocations are core members and study an allocation rule within this class of allocation rules with an appealing fairness property. Finally, we show that our results can be applied to a spare parts pooling situation.  相似文献   

2.
We consider a setting in which inventory plays both promotional and service roles; that is, higher inventories not only improve service levels but also stimulate demand by serving as a promotional tool (e.g., as the result of advertising effect by the enhanced product visibility). Specifically, we study the periodic‐review inventory systems in which the demand in each period is uncertain but increases with the inventory level. We investigate the multiperiod model with normal and expediting orders in each period, that is, any shortage will be met through emergency replenishment. Such a model takes the lost sales model as a special case. For the cases without and with fixed order costs, the optimal inventory replenishment policy is shown to be of the base‐stock type and of the (s,S) type, respectively. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

3.
Multi-echelon logistic systems are essential parts of the service support function of high technology firms. The combination of technological developments and competitive pressures has led to the development of services systems with a unique set of characteristics. These characteristics include (1) low demand probabilities: (2) high cost items; (3) complex echelon structures; (4) existence of pooling mechanisms among stocking locations at the same echelon level; (5) high priority for service, which is often expressed in terms of response time service levels for product groups of items: (6) scrapping of failed parts; and (7) recycling of issued stock due to diagnostic use. This article develops a comprehensive model of a stochastic, multi-echelon inventory system that takes account of the above characteristics. Solutions to the constrained optimization problem are found using a branch and bound procedure. The results of applying this procedure to a spare parts inventory system for a computer manufacturer have led to a number of important policy conclusions.  相似文献   

4.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   

5.
We study the problem of designing a two‐echelon spare parts inventory system consisting of a central plant and a number of service centers each serving a set of customers with stochastic demand. Processing and storage capacities at both levels of facilities are limited. The manufacturing process is modeled as a queuing system at the plant. The goal is to optimize the base‐stock levels at both echelons, the location of service centers, and the allocation of customers to centers simultaneously, subject to service constraints. A mixed integer nonlinear programming model (MINLP) is formulated to minimize the total expected cost of the system. The problem is NP‐hard and a Lagrangian heuristic is proposed. We present computational results and discuss the trade‐off between cost and service. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

6.
We consider a decentralized distribution channel where demand depends on the manufacturer‐chosen quality of the product and the selling effort chosen by the retailer. The cost of selling effort is private information for the retailer. We consider three different types of supply contracts in this article: price‐only contract where the manufacturer sets a wholesale price; fixed‐fee contract where manufacturer sells at marginal cost but charges a fixed (transfer) fee; and, general franchise contract where manufacturer sets a wholesale price and charges a fixed fee as well. The fixed‐fee and general franchise contracts are referred to as two‐part tariff contracts. For each contract type, we study different contract forms including individual, menu, and pooling contracts. In the analysis of the different types and forms of contracts, we show that the price only contract is dominated by the general franchise menu contract. However, the manufacturer may prefer to offer the fixed‐fee individual contract as compared to the general franchise contract when the retailer's reservation utility and degree of information asymmetry in costs are high. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

7.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   

8.
We consider a supplier with finite production capacity and stochastic production times. Customers provide advance demand information (ADI) to the supplier by announcing orders ahead of their due dates. However, this information is not perfect, and customers may request an order be fulfilled prior to or later than the expected due date. Customers update the status of their orders, but the time between consecutive updates is random. We formulate the production‐control problem as a continuous‐time Markov decision process and prove there is an optimal state‐dependent base‐stock policy, where the base‐stock levels depend upon the numbers of orders at various stages of update. In addition, we derive results on the sensitivity of the state‐dependent base‐stock levels to the number of orders in each stage of update. In a numerical study, we examine the benefit of ADI, and find that it is most valuable to the supplier when the time between updates is moderate. We also consider the impact of holding and backorder costs, numbers of updates, and the fraction of customers that provide ADI. In addition, we find that while ADI is always beneficial to the supplier, this may not be the case for the customers who provide the ADI. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

9.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

10.
冯琦  戴伟 《现代防御技术》2012,40(4):162-166,170
以武器装备初始备件的设计与供应现实为背景,根据初始备件的配置依据,提出了一种基于维修任务和维修保障要求的初始备件设计方法。通过这种设计方法,能够在研制过程中同步开展初始备件设计,并优化配置方案,从而为武器装备的初始备件清单设计提供了依据,也为其他武器装备的初始备件清单设计提供了借鉴。  相似文献   

11.
We consider a make‐to‐order manufacturer facing random demand from two classes of customers. We develop an integrated model for reserving capacity in anticipation of future order arrivals from high priority customers and setting due dates for incoming orders. Our research exhibits two distinct features: (1) we explicitly model the manufacturer's uncertainty about the customers' due date preferences for future orders; and (2) we utilize a service level measure for reserving capacity rather than estimating short and long term implications of due date quoting with a penalty cost function. We identify an interesting effect (“t‐pooling”) that arises when the (partial) knowledge of customer due date preferences is utilized in making capacity reservation and order allocation decisions. We characterize the relationship between the customer due date preferences and the required reservation quantities and show that not considering the t‐pooling effect (as done in traditional capacity and inventory rationing literature) leads to excessive capacity reservations. Numerical analyses are conducted to investigate the behavior and performance of our capacity reservation and due date quoting approach in a dynamic setting with multiple planning horizons and roll‐overs. One interesting and seemingly counterintuitive finding of our analyses is that under certain conditions reserving capacity for high priority customers not only improves high priority fulfillment, but also increases the overall system fill rate. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

12.
We address the problem of determining optimal ordering and pricing policies in a finite‐horizon newsvendor model with unobservable lost sales. The demand distribution is price‐dependent and involves unknown parameters. We consider both the cases of perishable and nonperishable inventory. A very general class of demand functions is studied in this paper. We derive the optimal ordering and pricing policies as unique functions of the stocking factor (which is a linear transformation of the safety factor). An important expression is obtained for the marginal expected value of information. As a consequence, we show when lost sales are unobservable, with perishable inventory the optimal stocking factor is always at least as large as the one given by the single‐period model; however, if inventory is nonperishable, this result holds only under a strong condition. This expression also helps to explain why the optimal stocking factor of a period may not increase with the length of the problem. We compare this behavior with that of a full information model. We further examine the implications of the results to the special cases when demand uncertainty is described by additive and multiplicative models. For the additive case, we show that if demand is censored, the optimal policy is to order more as well as charge higher retail prices when compared to the policies in the single‐period model and the full information model. We also compare the optimal and myopic policies for the additive and multiplicative models. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
We consider a firm which faces a Poisson customer demand and uses a base‐stock policy to replenish its inventories from an outside supplier with a fixed lead time. The firm can use a preorder strategy which allows the customers to place their orders before their actual need. The time from a customer's order until the date a product is actually needed is called commitment lead time. The firm pays a commitment cost which is strictly increasing and convex in the length of the commitment lead time. For such a system, we prove the optimality of bang‐bang and all‐or‐nothing policies for the commitment lead time and the base‐stock policy, respectively. We study the case where the commitment cost is linear in the length of the commitment lead time in detail. We show that there exists a unit commitment cost threshold which dictates the optimality of either a buy‐to‐order (BTO) or a buy‐to‐stock strategy. The unit commitment cost threshold is increasing in the unit holding and backordering costs and decreasing in the mean lead time demand. We determine the conditions on the unit commitment cost for profitability of the BTO strategy and study the case with a compound Poisson customer demand.  相似文献   

14.
Allocation of scarce common components to finished product orders is central to the performance of assembly systems. Analysis of these systems is complex, however, when the product master schedule is subject to uncertainty. In this paper, we analyze the cost—service performance of a component inventory system with correlated finished product demands, where component allocation is based on a fair shares method. Such issuing policies are used commonly in practice. We quantify the impact of component stocking policies on finished product delays due to component shortages and on product order completion rates. These results are used to determine optimal base stock levels for components, subject to constraints on finished product service (order completion rates). Our methodology can help managers of assembly systems to (1) understand the impact of their inventory management decisions on customer service, (2) achieve cost reductions by optimizing their inventory investments, and (3) evaluate supplier performance and negotiate contracts by quantifying the effect of delivery lead times on costs and customer service. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:409–429, 2001  相似文献   

15.
We study a component inventory planning problem in an assemble‐to‐order environment faced by many contract manufacturers in which both quick delivery and efficient management of component inventory are crucial for the manufacturers to achieve profitability in a highly competitive market. Extending a recent study in a similar problem setting by the same authors, we analyze an optimization model for determining the optimal component stocking decision for a contract manufacturer facing an uncertain future demand, where product price depends on the delivery times. In contrast to our earlier work, this paper considers the situation where the contract manufacturer needs to deliver the full order quantity in one single shipment. This delivery requirement is appropriate for many industries, such as the garment and toy industries, where the economies of scale in transportation is essential. We develop efficient solution procedures for solving this optimization problem. We use our model results to illustrate how the different model parameters affect the optimal solution. We also compare the results under this full‐shipment model with those from our earlier work that allows for multiple partial shipments. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

16.
Spatial pricing means a retailer price discriminates its customers based on their geographic locations. In this article, we study how an online retailer should jointly allocate multiple products and facilitate spatial price discrimination to maximize profits. When deciding between a centralized product allocation ((i.e., different products are allocated to the same fulfillment center) and decentralized product allocation (ie, different products are allocated to different fulfillment centers), the retailer faces the tradeoff between shipment pooling (ie, shipping multiple products in one package), and demand localization (ie, stocking products to satisfy local demand) based on its understanding of customers' product valuations. In our basic model, we consider two widely used spatial pricing policies: free on board (FOB) pricing that charges each customer the exact amount of shipping cost, and uniform delivered (UD) pricing that provides free shipping. We propose a stylized model and find that centralized product allocation is preferred when demand localization effect is relatively low or shipment pooling benefit is relatively high under both spatial pricing policies. Moreover, centralized product allocation is more preferred under the FOB pricing which encourages the purchase of virtual bundles of multiple products. Furthermore, we respectively extend the UD and FOB pricing policies to flat rate shipping (ie, the firm charges a constant shipping fee for each purchase), and linear rate shipping (ie, the firm sets the shipping fee as a fixed proportion of firm's actual fulfillment costs). While similar observations from the basic model still hold, we find the firm can improve its profit by sharing the fulfillment cost with its customers via the flat rate or linear rate shipping fee structure.  相似文献   

17.
We consider two opponents that compete in developing asymmetric technologies where each party's technology is aimed at damaging (or neutralizing) the other's technology. The situation we consider is different than the classical problem of commercial R&D races in two ways: First, while in commercial R&D races the competitors compete over the control of market share, in our case the competition is about the effectiveness of technologies with respect to certain capabilities. Second, in contrast with the “winner‐takes‐all” assumption that characterizes much of the literature on this field in the commercial world, we assume that the party that wins the race gains a temporary advantage that expires when the other party develops a superior technology. We formulate a variety of models that apply to a one‐sided situation, where one of the two parties has to determine how much to invest in developing a technology to counter another technology employed by the other party. The decision problems are expressed as (convex) nonlinear optimization problems. We present an application that provides some operational insights regarding optimal resource allocation. We also consider a two‐sided situation and develop a Nash equilibrium solution that sets investment values, so that both parties have no incentive to change their investments. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 128–145, 2012  相似文献   

18.
针对相控阵天线阵面备件配置存在的冗余性强、批量送修、多级维修等现实问题,综合考虑备件费用、维修能力以及库存策略之间的关系,建立了基于定期补给的两级备件优化配置模型。给出了系统的故障件维修周转过程和维修备件的定期补给过程,在分析备件、库存、维修能力之间关系的基础上,结合成批到达的排队理论,建立了系统的供应可用度模型。以备件配置费用最小为目标、以系统供应可用度为约束条件,建立了系统的备件优化配置模型,并通过边际效益分析法对模型进行了求解。通过算例仿真与分析对模型进行了验证。结果表明:构建的备件配置能够较好地解决相控阵天线阵面的备件配置问题,具有一定的优越性。  相似文献   

19.
We consider the coordination problem between a vendor and a buyer operating under generalized replenishment costs that include fixed costs as well as stepwise freight costs. We study the stochastic demand, single‐period setting where the buyer must decide on the order quantity to satisfy random demand for a single item with a short product life cycle. The full order for the cycle is placed before the cycle begins and no additional orders are accepted by the vendor. Due to the nonrecurring nature of the problem, the vendor's replenishment quantity is determined by the buyer's order quantity. Consequently, by using an appropriate pricing schedule to influence the buyer's ordering behavior, there is an opportunity for the vendor to achieve substantial savings from transportation expenses, which are represented in the generalized replenishment cost function. For the problem of interest, we prove that the vendor's expected profit is not increasing in buyer's order quantity. Therefore, unlike the earlier work in the area, it is not necessarily profitable for the vendor to encourage larger order quantities. Using this nontraditional result, we demonstrate that the concept of economies of scale may or may not work by identifying the cases where the vendor can increase his/her profits either by increasing or decreasing the buyer's order quantity. We prove useful properties of the expected profit functions in the centralized and decentralized models of the problem, and we utilize these properties to develop alternative incentive schemes for win–win solutions. Our analysis allows us to quantify the value of coordination and, hence, to identify additional opportunities for the vendor to improve his/her profits by potentially turning a nonprofitable transaction into a profitable one through the use of an appropriate tariff schedule or a vendor‐managed delivery contract. We demonstrate that financial gain associated with these opportunities is truly tangible under a vendor‐managed delivery arrangement that potentially improves the centralized solution. Although we take the viewpoint of supply chain coordination and our goal is to provide insights about the effect of transportation considerations on the channel coordination objective and contractual agreements, the paper also contributes to the literature by analyzing and developing efficient approaches for solving the centralized problem with stepwise freight costs in the single‐period setting. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

20.
When facing uncertain demand, several firms may consider pooling their inventories leading to the emergence of two key contractual issues. How much should each produce or purchase for inventory purposes? How should inventory be allocated when shortages occur to some of the firms? Previously, if the allocations issue was considered, it was undertaken through evaluation of the consequences of an arbitrary priority scheme. We consider both these issues within a Nash bargaining solution (NBS) cooperative framework. The firms may not be risk neutral, hence a nontransferable utility bargaining game is defined. Thus the physical pooling mechanism itself must benefit the firms, even without any monetary transfers. The firms may be asymmetric in the sense of having different unit production costs and unit revenues. Our assumption with respect to shortage allocation is that a firm not suffering from a shortfall, will not be affected by any of the other firms' shortages. For two risk neutral firms, the NBS is shown to award priority on all inventory produced to the firm with higher ratio of unit revenue to unit production cost. Nevertheless, the arrangement is also beneficial for the other firm contributing to the total production. We provide examples of Uniform and Bernoulli demand distributions, for which the problem can be solved analytically. For firms with constant absolute risk aversion, the agreement may not award priority to any firm. Analytically solvable examples allow additional insights, e.g. that higher risk aversion can, for some problem parameters, cause an increase in the sum of quantities produced, which is not the case in a single newsvendor setting. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号