首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《防务技术》2020,16(3):705-711
In this study, based on two attractive energetic compounds pentazole (PZ) and tetraazacubane (TAC), a new family of high energy and high nitrogen compounds pentazolyltetraazacubanes were designed. Then, a different number of NH2 or NO2 groups were introduced into the system to further adjust the property. The structures, properties, and the structure-property relationship of designed molecules were investigated theoretically. The results showed that all nine designed compounds have extremely high heat of formation (HOF, 1226-2734 kJ/mol), good density (1.73–1.88 g/cm3), high detonation velocity (8.30–9.35 km/s), high detonation pressure (29.8–39.7 GPa) and acceptable sensitivity (ΔV: 41-87 Å3). These properties could be effectively positive adjusted by replacing one or two PZ rings by NH2 or/and NO2 groups, especially for the energy and sensitivity performance, which were increased and decreased obviously, respectively. As a result, two designed pentazolyltetraazacubanes were predicted to have higher energy and lower sensitivity than the famous high energy compound in use 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, while two others have better combination property than 1,3,5-Trinitro-1,3,5-triazacyclohexane. In all, four new pentazolyltetraazacubanes with good combination performance were successfully designed by combining PZ with TAC, and the further property adjustment strategy of introducing a suitable amount of NH2/NO2 groups into the system. This work may help develop new cage energetic compounds.  相似文献   

2.
《防务技术》2022,18(11):2074-2082
To improve the safety of HMX, HMX/NH2-GO composite was prepared with aqueous ammonia functionalized graphene oxide (NH2-GO). The composite was characterized by SEM, Zeta potential, XPS, Raman spectrum, XRD, HPLC, DSC and BAM sensitivity test. The results indicated that the functionalization with aqueous ammonia can enhance the interaction between GO and HMX, and more efficiently desensitize the explosive. The optimal impact sensitivity of the HMX/NH2-GO composite can be not less than 40 J, which is also the most insensitivity compared to the previous reports prepared by coating desensitization with non-energetic desensitized material. Moreover, the potential reason for the different impact and friction sensitivity was also discussed, which may bring a novel perspective to achieve the desensitization of energetic material.  相似文献   

3.
Heterocyclic skeleton (Azoles) and different energetic groups containing high performing explosives are highly emerged in recent years to meet the challenging requirements of energetic materials in both military and civilian applications with improved performance. For this purpose tetrazole (Azole) is identified as an attractive heterocyclic backbone with energetic functional groups nitro (-NO2), nitrato (-ONO2), nitrimino (-NNO2), and nitramino (–NH–NO2) to replace the traditionally used high performing explosives. The tetrazole based compounds having these energetic functional groups demonstrated advanced energetic performance (detonation velocity and pressure), densities, and heat of formation (HOF) and became a potential replacement of traditional energetic compounds such as RDX. This review presents a summary of the recently reported nitro-tetrazole energetic compounds containing poly-nitro, di/mono-nitro, nitrato/nitramino/nitrimino, bridged/bis/di tetrazole and nitro functional groups, describing their preparation methods, advance energetic properties, and further applications as high-performing explosives, especially those reported in the last decade. This review aims to provide a fresh concept for designing nitro-tetrazole based high performing explosives together with major challenges and perspectives.  相似文献   

4.
《防务技术》2020,16(3):564-570
An experimental study was carried out to investigate the flame propagation and thermal hazard of the premixed N2O/fuel mixtures, including NH3, C3H8 and C2H4. The study provided the high speed video images and data about the flame locations, propagation patterns, overpressures and the quenching diameters during the course of combustion in different channels to elucidate the dynamics of various combustion processes. The onset decomposition temperature was determined using high-performance adiabatic calorimetry. It was shown that the order of the flame acceleration rate and thermal hazard was N2O/C2H4>N2O/C3H8>N2O/NH3.  相似文献   

5.
《防务技术》2022,18(9):1538-1545
3-nitro-1,2,4-tri-azol-5-one (NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1 (32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity (7746 m/s) and the parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shock-initiation gap experiment and numerical simulation. The determined trinomial ignition and growth model (IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.  相似文献   

6.
Insensitive energetic materials are promising in the defense weapons field. However, energetic materials still suffer from great challenges and the concern about their safety limits their utilization. In this work, insensitive energetic explosive 3,3′-diamino-4,4′-azoxyfurazan/hexahydro-1,3,5-trinitro-1,3,5-triazine (DAAF/RDX) microspheres were fabricated by self-assembly method. Rod-like DAAF/RDX was prepared by mechanical ball milling for comparison. DAAF/RDX composites with different mass ratios (90:10, 80:20, and 70:30) were obtained. The morphologies and structures of as-obtained DAAF/RDX composites were characterized by scanning electron microscopy (SEM), powder x-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FT-IR). The results showed that DAAF/RDX microspheres exhibited regular shaped microspheres with sizes from 0.5 to 1.2 μm. There was no crystal transition during the modification process. The thermal properties of as-obtained materials were then evaluated by differential scanning calorimetry (DSC) and materials studio software. DAAF/RDX microspheres showed an advanced decomposition peak temperature compared with rod-like DAAF/RDX. The binding energy and peak temperature values at zero βi (TP0) of DAAF/RDX (90:10) increased by 36.77 kJ/mol, 1.6 °C, and 58.11 kJ/mol, 12.3 °C compared to DAAF/RDX (80:20) and DAAF/RDX (70:30), indicating the better thermal stability of DAAF/RDX (90:10). The characteristic drop height (H50) of DAAF/RDX (higher than 100 cm) composites was higher than that of raw RDX (25 cm), suggesting significant improvements in mechanical safety. The preparation of DAAF/RDX microspheres is promising for the desensitization of RDX and useful for the formation of other materials and future wide applications.  相似文献   

7.
《防务技术》2019,15(3):306-312
A sol-gel freezing-drying method was utilized to prepare energetic nanocomposites based on 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane (CL-20) with 3, 3-Bis (azidomethyl) oxetane-tetrahydrofuran copolymer (BAMO-THF) as energetic gel matrix. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FT-IR) and differential thermal analyser (DTA) were utilized to characterize the structure and property of the resultant energetic nanocomposites. Compared with raw CL-20, the average particle sizes of CL-20 in CL-20/BAMO-THF energetic nanocomposites were decreased to nano scale and the morphologies of CL-20 were also changed from prismatic to spherical. FT-IR detection revealed that CL-20 particles were recrystallized in BAMO-THF gel matrix during the freezing-drying process. The thermal decomposition behaviors of the energetic nanocomposites were investigated as well. The thermolysis process of CL-20/BAMO-THF nanocomposites was enhanced and the activation energy was lower compared with that of raw CL-20, indicating that CL-20/BAMO-THF nanocomposites showed high thermolysis activity. The impact sensitivity tests indicated that CL-20/BAMO-THF energetic nanocomposites presented low sensitivity performance.  相似文献   

8.
《防务技术》2020,16(4):825-833
The combination of 5,5′-bistetrazole-1,1′-diolate (TKX-50) and ammonium perchlorate (AP) can make greater use of the chemical energy of TKX-50 based energetic materials. The research on the interaction mechanism between TKX-50 and AP is very important for designing TKX-50-AP compounds and judging the formation feasibility of composite particles, which can lay a theoretical foundation for the preparation of TKX-50-AP mixed crystals and the application of TKX-50 in propellant, propellant and explosive. Herein, in order to research the interaction mechanism between TKX-50 and AP, density-functional theory calculation was applied to optimize three configurations of TKX-50-AP compounds. The geometry structure, electrostatic potential and binding energy of the compounds were predicted, and the electronic density topological analysis was also carried out. Then TKX-50-AP mixed crystals structures were constructed, and the radial distribution function of H–O and H–N in mixed crystals was calculated. Finally, solvent/non-solvent method was applied to prepare TKX-50-AP composites, and the infrared spectroscopy and the non-isothermal decomposition performance of the composites were characterized. Results show that the superposition of positive charges in TKX-50 molecule and negative charges in AP makes the electrostatic potential distributions of TKX-50-AP compounds different from that of TKX-50 and AP. The interaction energies of TKX-50-AP 1, TKX-50-AP 2 and TKX-50-AP 3 are 39.743 kJ/mol, 61.206 kJ/mol and 27.702 kJ/mol, respectively. The interaction between TKX-50 molecules and AP molecules in TKX-50-AP mixed crystals both depends on hydrogen bonds and van der Waals force, and the number and strength of hydrogen bonds are significantly greater than that of van der Waals force. The composition of AP and TKX-50 makes the absorption peak of the five-membered rings and NH3OH+ of TKX-50 shift to low wavenumber in the infrared spectroscopy. In general, TKX-50 interacts with AP via hydrogen bonds and van der Waals force, and the calculated results are in good agreement with the experimental results. The composition of TKX-50 and AP can also prolong the decomposition process.  相似文献   

9.
《防务技术》2021,17(5):1609-1616
cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX) is an advanced energetic compound that expected to spread worldwide in the near future. Since, no approved remote detection methods were reported in current literature for this material, we performed hyper-spectral imaging and laser induced fluorescence (LIF) to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems. For this purpose, an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives, HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), PETN (2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate). The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm. When light source was replaced by a 405 nm laser diode illuminator, a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm2. Finally, we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 μg/cm2.  相似文献   

10.
《防务技术》2014,10(1):28-33
A differential/integral method to estimate the kinetic parameters (apparent activation energy Ea and pre-exponential factor A) for thermal decomposition reaction of energetic materials based on Kooij formula are applied to study the nonisothermal decomposition reaction kinetics of hexanitrohexaazaisowurtzitane (HNIW) by analyzing nonisothermal DSC curve data. The apparent activation energy (Ea) obtained by the integral isoconversional non-isothermal method based on Kooij formula is used to check the constancy and validity of apparent activation energy by the differential/integral method based on Kooij formula. The most probable mechanism function of thermal decomposition reaction of HNIW is determined by a logical choice method. The equations for calculating the critical temperatures of thermal explosion (Tb) and adiabatic time-to-explosion (tTIad) based on Kooij formula are used to calculate the values of Tb and tTIad to evaluate the thermal safety and heat-resistant ability of HNIW. All the original data needed for analyzing the kinetic parameters are from nonisothermal DSC curves. The results show that the kinetic model function in differential form and the values of Ea and A of decomposition reaction of HNIW are 3(1 − α)[−ln(1 − α)]2/3, 152.73 kJ mol−1 and 1011.97 s−1, respectively, and the values of self-accelerating decomposition temperature (TSADT), Tb and tTIad are 486.55 K, 493.11 K and 52.01 s, respectively.  相似文献   

11.
《防务技术》2020,16(3):635-641
Among practical metal additives, boron (B) has a high volumetric heating value, making it a promising choice as a fuel additive. Although B can theoretically yield a large amount of energy upon complete combustion, its combustion is retarded by the initial presence of B oxide, which coats the surfaces of B particle. To improve the ignition and combustion properties of B powder, LiOH and NH4F were used as precursors to synthesize uniformly LiF-coated B composites (LiF-B) in situ. The LiF-B mixture was also prepared for comparison using a physical method. X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize the morphologies and compositions of the products. The thermal and combustion properties of the samples were characterized by thermal gravity-differential thermal gravity (TG-DTG), differential scanning calorimetry (DSC) and closed bomb experiment. The XRD, FTIR, SEM and EDS results demonstrated the successful preparation of the coated LiF-B sample. The TG-DTG and closed bomb experiment results indicated that the addition of LiF decreased the ignition temperature of B powder, and increasing its reaction efficiency. DSC results show that when LiF-B was added, the released heat of underwater explosive increased by 6727.2, 7280.4 and 3109.6 J/g at heating rates of 5, 10, and 15 °C/min, respectively. Moreover, LiF-B decreased the activation energy of secondary combustion reaction of explosive system as calculated through Kissinger's method by 28.9%, which indicated an excellent catalytic effect for the thermal decomposition of underwater explosive. The results reveal that LiF can improve the combustion efficiency of B powder, thereby increasing the total energy of explosives. The mechanical sensitivity increased slightly after adding LiF-B to the underwater explosive. Compared to the underwater explosive with added B, the mechanical sensitivity of the explosive with added LiF-B was significantly lower.  相似文献   

12.
《防务技术》2014,10(4):384-392
Computations by density functional theory (DFT) method are performed on a series of di-1H-1,3,4-triazole derivatives with different substituents and linkages. The heat of formation (HOF) is predicted by the designed isodesmic reactions. The predicted results reveal that –N3 and –NN– groups are effective structural units for increasing the HOF values of the di-1H-1,3,4-triazole derivatives. The HOMO–LUMO gap is affected by the substituents and linkage groups. Detonation performance is evaluated using the Kamlet–Jacobs approach based on the calculated density and HOF. The results indicate that –NO2, –NF2, –NH–, –NH–NH– and –NN– groups are helpful for enhancing the detonation properties of di-1H-1,3,4-triazole derivatives. The bond dissociation energy and bond order of the weakest bonds are analyzed to investigate their stability. It is observed that the –CH2–, –CH2–CH2– and –CHCH– groups are effective structural units for improving the stabilities of these derivatives. Considering the detonation performance and the stability, five compounds are screened as the potential candidates for high energy density materials.  相似文献   

13.
The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene (CL-20/TNT) composite was prepared by spray-drying method in which sensitive high energy explosive (CL-20) was coated with insensitive explosive (TNT). The structure and properties of different formulations of CL-20/TNT composite and CL-20/TNT mixture were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Laser particle size analyzer, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impact sensitivity test and detonation performance. The results of SEM, TEM, XPS and XRD show that ϵ-CL-20 particles are coated by TNT. When the ratio of CL-20/TNT is 75/25, core-shell structure is well formed, and thickness of the shell is about 20–30 nm. And the analysis of heat and impact show that with the increase of TNT content, the TNT coating on the core-shell composite material can not only catalyze the thermal decomposition of core material (CL-20), but also greatly reduce the impact sensitivity. Compared with the CL-20/TNT mixture (75/25) at the same ratio, the characteristic drop height of core-shell CL-20/TNT composite (75/25) increased by 47.6% and the TNT coating can accelerate the nuclear decomposition in the CL-20/TNT composites. Therefore, the preparation of the core-shell composites can be regarded as a unique means, by which the composites are characterized by controllable decomposition rate, high energy and excellent mechanical sensitivity and could be applied to propellants and other fields.  相似文献   

14.
《防务技术》2022,18(10):1914-1921
The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes. Glycidyl azide polymer (GAP) and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20) was employed as the energetic component. The newly designed formulation containing 60 % CL-20 produced a force constant of 1077 J/g and low flame temperature of 2817 K. Two foamed propellants with densities of 1.32 g/cm3 and 1.53 g/cm3 were fabricated by a confined foaming process and examined by closed bomb tests. The results revealed that porosity significantly affects burning performance. A size effect on combustion behaviors was observed for the foamed propellant with 5.56 % porosity, and a double-hump progressive dynamic vivacity curve was obtained. At last, the 30 mm gun test was carried out to demonstrate the interior ballistic performance, and the muzzle velocity increased by 120 m/s at the same maximum chamber pressure when monolithic propellant was added in the charge.  相似文献   

15.
Fluoropolymers get increasing attention in energetic materials application due to the high fluorine content. To explore the effect of poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) on Al/MnO2 nanothermite, the samples with different contents are prepared and characterized by SEM, TG-DSC, XRD, and their ignition and combustion behavior are tested and recorded. The results show that P(VDF-HFP) as an energetic binder can combine the nanothermite components together, even exist in the gaps. The integrity of energetic materials has been improved. Thermal analysis shows that the addition of P(VDF-HFP) greatly changes the thermal reaction processes, and the exothermic peaks appear early, but the utilization of fuel and oxidizer is not efficient from the XRD results. Furthermore, the appropriate addition of P(VDF-HFP) can directly reduce the ignition energy threshold and increase the combustion time, which is necessary for the potential ignition charge application. The possible reasons for above phenomena are discussed and analyzed. This research provides a reference for improvement of thermite-based ignition charge formulation.  相似文献   

16.
Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained by a liquid-phase exfoliation of h-BN powders and incorporated into EVA coatings for improving the safety performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).HBNNSs and ethylene-vinyl acetate copolymer(EVA)were introduced to HMX by a solvent-slurry process.For com-parison,the HMX/EVA and HMX/EVA/graphene(HMX/EVA/G)composites were also prepared by a similar process.The morphology,crystal form,surface element distribution,thermal decomposition property and impact sensitivity of HMX/EVA/hBNNSs composites were contrastively investigated.Results showed that as prepared HMX/EVA/hBNNSs composites were well coated with hBNNSs and EVA,and exhibited better thermal stability and lower impact sensitivity than that of HMX/EVA and HMX/EVA/G composites,suggesting superior performance of desensitization of hBNNSs in explosives.  相似文献   

17.
《防务技术》2022,18(10):1810-1821
In this paper, various core-shell structured Al–Ni@ECs composites have been prepared by a spray-drying technique. The involved ECs refer to the energetic composites (ECs) of ammonium perchlorate/nitrocellulose (AP/NC, NA) and polyvinylidene fluoride/hexanitrohexaazaisowurtzitane (PVDF/CL-20, PC). Two Al–Ni mixtures were prepared at atomic ratios of 1:1 and 1:3 and named as Al/Ni and Al/3Ni, respectively. The thermal reactivity and combustion behaviors of Al–Ni@ECs composites have been comprehensively investigated. Results showed that the reactivity and combustion performance of Al–Ni could be enhanced by introducing both NA and PC energetic composites. Among which the Al/Ni@NA composite exhibited higher reactivity and improved combustion performance. The measured flame propagation rate (v = 20.6 mm/s), average combustion wave temperature (Tmax = 1567.0 °C) and maximum temperature rise rate (γt = 1633.6 °C/s) of Al/Ni@NA are higher than that of the Al/Ni (v = 15.8 mm/s, Tmax = 858.0 °C, and γt = 143.5 °C/s). The enhancement in combustion properties could be due to presence of the acidic gaseous products from ECs, which could etch the Al2O3 shell on the surface of Al particles, and make the inner active Al to be easier transported, so that an intimate and faster intermetallic reaction between Al and Ni would be realized. Furthermore, the morphologies and chemical compositions of the condensed combustion products (CCPs) of Al–Ni@ECs composites were found to be different depending on the types of ECs. The compositions of CCPs are dominated with the Al–Ni intermetallics, combining with a trace amount of Al5O6N and Al2O3.  相似文献   

18.
用化学吸收光度法 (CAP)和热重 气相色谱联用法 (TG GC)测定了热分析逸出气中的氨。两种方法均简便、快捷和准确 ,通常回收率在 1 0 0± 6 %。比较了这些方法的使用范围  相似文献   

19.
《防务技术》2020,16(2):425-431
This work describes the preparation and study of the properties of composite nanoparticles prepared by the sol-gel method which consists of two materials (Al2O3-CaO), and study the effect of these nanoparticles on the mechanical behavior of a polymer blend (EP 4% + 96% UPE). The powder was evaluated by X-ray diffraction analysis, scanning electron microscopy analysis (SEM), particle size analysis, and energy dispersive X-ray analysis (EDX). The mechanical behavior of the composite material was assessed by tensile test, bending test and hardness test. The evaluation results of the composite nanoparticles showed good distribution of the chemical composition between aluminum oxide and calcium oxide, smoothness in particles' size at calcination in high and low temperatures, formation of different shapes of nanoparticles and different (kappa and gamma) phases of the Al2O3 particles. The results of mechanical behavior tests showed marked improvement in the mechanical properties of the resulted composite material, especially at 1.5%, compared with polymer blend material without nano powder addition. The tensile properties improved about (24 and 14.9) % and bending resistance about (23.5 and 16.8) % and hardness by (25 and 22) % when adding particles of size (63.8 and 68.6) respectively. Therefore, this reflects the efficiency of the proposed method to manufacture the nanocomposite powder and the possibility of using this powder as a strengthening material for the composite materials and using these composite materials in bio applications, especially in the fabrication of artificial limbs.  相似文献   

20.
纳米二氧化硅增强硬质聚氨酯泡沫塑料的制备   总被引:8,自引:0,他引:8       下载免费PDF全文
采用功率超声,将纳米二氧化硅颗粒分散到多次甲基多苯基多异氰酸酯体系内,然后与聚醚多元醇聚合制得了纳米二氧化硅增强的硬质聚氨酯泡沫塑料。SEM分析表明,纳米二氧化硅均匀分散在聚氨酯泡沫中。在较低添加量时,纳米二氧化硅使压缩强度和冲击强度有一定提高,但会引起多次甲基多苯基多异氰酸酯粘度迅速增加,从而导致发泡反应困难,当添加量为7wt%时,压缩强度和冲击强度开始下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号