首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《防务技术》2020,16(1):50-68
The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity, i.e., the projectile is forced to flow radially on the surface of ceramic plates for a period of time without significant penetration. Interface defeat has a direct effect upon the ballistic performance of the armor piercing projectile, which is studied numerically and theoretically at present. Firstly, by modeling the projectiles and ceramic targets with the SPH (Smoothed Particle Hydrodynamics) particles and Lagrange finite elements, the systematic numerical simulations on interface defeat are performed with the commercial finite element program AUTODYN. Three different responses, i.e., complete interface defeat, dwell and direct penetration, are reproduced in different types of ceramic targets (bare, buffered, radially confined and oblique). Furthermore, by adopting the validated numerical algorithms, constitutive models and the corresponding material parameters, the influences of projectile (material, diameter, nose shape), constitutive models of ceramic (JH-1 and JH-2 models), buffer and cover plate (thickness, constraints, material), as well as the prestress acted on the target (radial and hydrostatic) on the interface defeat (transition velocity and dwell time) are systematically investigated. Finally, based on the energy conservation approach and taking the strain rate effect of ceramic material into account, a modified model for predicting the upper limit of transition velocity is proposed and validated. The present work and derived conclusions can provide helpful reference for the design and optimization of both the long-rod projectile and ceramic armor.  相似文献   

2.
为研究钢管在弹体侵彻过程中的变形特点,基于ANSYS/LS-DYNA软件,采用Johnson-Cook模型,模拟了半球形弹体以不同速度正向冲击钢管时的非线性动力响应情况。结果表明:弹体速度越小,钢管的抗侵彻性能越好;弹体速度越接近临界破坏速度,钢管降低弹体速度的能力就越明显;弹体冲击钢管时,钢管上表面比下表面更容易产生大变形,消耗更多的弹体动能,并在抗侵彻过程中伴有局部凹陷、蝶形变形和贯穿现象。实验结果可为圆柱壳结构钢管在冲击荷载作用下的耗能分析提供参考。  相似文献   

3.
Studies on ballistic penetration to laminates is complicated, but important for design effective protection of structures. Experimental means of study is expensive and can often be dangerous. Numerical simu-lation has been an excellent supplement, but the computation is time-consuming. Main aim of this thesis was to develop and test an effective tool for real-time prediction of projectile penetrations to laminates by training a neural network and a decision tree regression model. A large number of finite element models were developed;the residual velocities of projectiles fromfinite element simulations were used as the target data and processed to produce sufficient number of training samples. Study focused on steel 4340tpolyurea laminates with various configurations. Four different 3D shapes of the projectiles were modeled and used in the training. The trained neural network and decision tree model was tested using independently generated test samples using finite element models. The predicted projectile velocity values using the trained machine learning models are then compared with thefinite element simulation to verify the effectiveness of the models. Additionally, both models were trained using a published experimental data of projectile impacts to predict residual velocity of projectiles for the unseen samples. Performance of both the models was evaluated and compared. Models trained with Finite element simulation data samples were found capable to give more accurate predication, compared to the models trained with experimental data, becausefinite element modeling can generate much larger training set, and thus finite element solvers can serve as an excellent teacher. This study also showed that neural network model performs better with small experimental dataset compared to decision tree regression model.  相似文献   

4.
为了精确快速地建立身管结构有限元网格模型,提出基于Python脚本语言操作单元和节点坐标的参数化建模方法,建立身管结构有限元网格模型。使用该方法能够精确地建立身管内膛(包含药室、坡膛和导向部)和外部轮廓的有限元网格模型,并进行参数化建模。以76 mm火炮身管为对象,建立身管与弹丸耦合的有限元模型,计算弹丸在身管内的全弹道运动过程,并结合相应实验进行验证。研究结果表明:该方法能够精确快速地建立身管结构有限元网格模型。  相似文献   

5.
The present study deals with development of conceptual proof for jute rubber basedflexible composite block to completely arrest the projectile impacting the target at high velocity impact of 400 m/s through numerical simulation approach using finite element (FE) method. The proposed flexible composite blocks of repeating jute/rubber/jute (JRJ) units are modelled with varying thickness from 30 mm to 120 mm in increments of 30 mm and impacted by flat (F), ogival (O) and hemispherical (HS) shaped projectiles. All the considered projectiles are impacted with proposed flexible composite blocks of different thicknesses and the penetration behaviour of the projectile in each case is studied. The penetration depth of the projectile in case of partially penetrated cases are considered and the effect of thickness and projectile shape on percentage of penetration depth is statistically analyzed using Tagu-chi's design of experiments (DOE). Results reveal that the though proposedflexible composite block with thickness of 90 mm is just sufficient to arrest the complete penetration of the projectile, considering the safety issues, it is recommended to use theflexible composite with thickness of 120 mm. The nature of damage caused by the projectile in the flexible composite is also studied. Statistical studies show that thickness of the block plays a prominent role in determining the damage resistance of the flexible composite.  相似文献   

6.
基于有限元法(FEM)和光滑粒子流体动力学(SPH)结合的算法,用数值模拟了钢质弹丸对钢筒约束土体的侵彻过程。基于ANSYS/LS-DYNA显式动力分析和LS-PrePost后处理软件,形象再现了钢质弹丸冲击作用下土体飞溅形成漏斗坑和直线通道的物理过程。侵彻深度计算结果与实验数据吻合较好,钢质弹丸的速度和加速度时程曲线图与理论分析一致,体现了FEM/SPH算法的精确性。研究结果表明FEM/SPH算法在模拟侵彻土体方面具有可行性和有效性。  相似文献   

7.
Impact velocity (v0), target strength (fc) and target thickness (hc) are important factors affecting opening damage ((D)) of PELE penetration into RC target. In this paper, based on the three influence factors of v0, fc and hc, experimental and numerical simulation studies on PELE penetration into RC target were carried out. The study results show that: (1) Since interaction force (or penetration resistance) between pro-jectile and target is positively correlated with v0 and fc, with the increase of v0 and fc, deformation mode of jacket is changed from small bending deformation to large bending deformation and then to curling deformation. Therefore, the variation of jacket deformation mode causes opening diameter of RC target to increase first and then to decrease. It is found that the two factors approximately satisfy a quadratic function relationship, respectively. (2) For PELE projectile penetrating RC targets with thickness of 80—400 mm, the opening diameter of six sets of RC targets grows from 240 to 500 mm, and hc with (D) approximately satisfy a linear relationship. (3) Based on the above study results, the relationship be-tween two dimensionless parameters (I= (mv20/d31fc) and H= hc/l ) and dimensionless opening diameter ((D)/d1) was determined. Combined with the results of previous research, a dimensionless opening diameter model (D)/d1=f1(Q,G,I)f2(H) was established. By tests verified, the test results are all within ±10%error of the theoretical model, which verifies the accuracy of the model.  相似文献   

8.
弹体的攻角直接影响其侵彻能力,而横向运动板能使弹体发生偏转改变攻角,间接影响弹体的侵彻能力。在一定条件下,推导长杆弹在单层横向运动板作用下的偏转模型,并利用有限元仿真软件ANSYS/LS-rDYNA对长杆弹侵彻横向运动板的过程进行数值模拟。通过对偏转模型及仿真结果的分析,发现两者较为相符。研究结果显示:长杆弹侵彻横向运动板时,弹体会发生偏转,偏转的角速度先增后减,最后为0rad/s,此时偏转角最大;弹体速度方向也会发生偏转,其最终偏转角与弹体轴线的偏转角接近。  相似文献   

9.
基于动态球形空腔膨胀理论给出的阻力函数理论公式和开坑阶段的表面层裂机理,建立了能够综合考虑弹头形状、开坑区深度的斜侵彻深度预测模型,并进一步推导了能够适用不同弹头形状的弹体过载时程曲线计算公式。预测模型得到的侵彻深度和过载与试验结果吻合较好。研究结果可为弹体与混凝土靶的斜侵彻弹道分析和弹丸头部设计提供一定帮助。  相似文献   

10.
以斜侵彻过程中的终点弹道为研究对象,基于动态球形空腔膨胀理论给出的阻力函数理论公式和开坑阶段的表面层裂机理,建立了能够综合考虑弹头形状、开坑区深度的斜侵彻深度预测模型,并进一步推导了能够适用不同弹头形状的弹体过载时程曲线计算公式。预测模型得到的侵彻深度和过载与试验结果吻合较好。研究结果可为弹体与混凝土靶的斜侵彻弹道分析和弹丸头部设计提供一定帮助。  相似文献   

11.
为研究球形头部弹丸高速侵彻运动靶板的侵彻规律,运用LS-DYNA动力分析软件仿真研究了不同条件下球形头部弹丸对靶板的正侵彻效应,获得了运动靶板厚度、材料和弹丸着速3种参数对侵彻过程中弹丸弹道偏移、翻转角度和剩余速度的响应规律。结果表明,随着着速的提高,弹丸翻转幅度和弹道偏移量逐渐减小;随着靶板厚度的增加,弹丸正向翻转角度和轴向剩余速度显著减小,而弹道偏移量增大;3种材料运动靶板中,4340钢靶对弹丸弹道偏移、翻转角度和剩余速度的影响最大,Weldox460钢次之,LY12铝最小。  相似文献   

12.
为了研究弹丸对武器装备的损伤,建立弹丸侵彻多层靶板的有限元模型,对不同初速弹丸侵彻多层靶板进行仿真试验,引入等效应变及等效应力参量以精确描述靶板损伤,提出一种基于多元统计分析对靶板损伤进行评估的方法。结果表明:利用该方法所得到的计算结果与理论分析结果完全一致。这说明基于多元统计分析的靶板损伤评估方法能够正确地评价仿真实验中目标靶板的战损程度,因而可以进一步应用于装备侵彻损伤评估与易损性研究中。  相似文献   

13.
主拉应力破坏是砌体结构在地震荷载作用下最常见的一种破坏形式,剪刀撑水泥砂浆网薄层加固法就是针对砌体结构抵抗主拉应力不足的一种加固方法。为了考察该方法加固砌体墙体的受力性能及加固效果,对6片砂浆强度不同、加固方法不同的墙体试件进行了拟静力试验。试验结果表明:剪刀撑水泥砂浆网薄层加固法能够明显提高砌体墙体的抗剪承载力;该方法更适合于加固砂浆强度较低的砌体墙体;采用该方法加固后的砌体墙体破坏形式以剪切滑移破坏为主;加固面层能够与原有墙体较好地共同工作。目前剪刀撑水泥砂浆网薄层加固法是一个崭新的课题,该拟静力试验给出的试验分析结果和建议可供相关研究和加固工程设计参考。  相似文献   

14.
This work presents a numerical simulation of ballistic penetration and high velocity impact behavior of plain and reinforced concrete panels. This paper is divided into two parts. The first part consists of numerical modeling of reinforced concrete panel penetrated with a spherical projectile using concrete damage plasticity (CDP) model, while the second part focuses on the comparison of CDP model and Johnson-Holmquist-2 (JH-2) damage model and their ability to describe the behavior of concrete panel under impact loads. The first and second concrete panels have dimensions of 1500 mm × 1500 mm × 150 mm and 675 mm × 675 mm × 200 mm, respectively, and are meshed using 8-node hexahedron solid elements. The impact object used in the first part is a spherical projectile of 150 mm diameter, while in the second part steel projectile of a length of 152 mm is modeled as rigid element. Failure and scabbing characteristics are studied in the first part. In the second part, the com-parison results are presented as damage contours, kinetic energy of projectile and internal energy of the concrete. The results revealed a severe fracture of the panel and high kinetic energy of the projectile using CDP model comparing to the JH-2 model. In addition, the internal energy of concrete using CDP model was found to be less comparing to the JH-2 model.  相似文献   

15.
采用数值模拟技术研究了由3种不同截面形状的钨芯外包覆一层钢,形成的钢包覆层复合长杆弹在入射速度为1200m/s~1700m/s时对陶瓷/金属复合靶板的侵彻过程。结果表明:对于同一入射速度、相同弹体长度、同种材料的弹芯和包覆层以及靶板材料而言,等面积的六边形截面钨芯复合长杆弹的侵彻深度明显大于圆形及方形截面,方形及六边形截面与和它们等外接圆形成的圆形截面复合长杆弹侵彻深度没有明显差别,本研究认为这是与不同截面钨芯的外接圆直径直接相关。六边形截面长杆弹侵彻过程中的自锐化现象是其侵彻深度明显大于其它两种弹体的主要原因。  相似文献   

16.
激光熔覆过程中产生的残余应力与应变对熔覆层的裂纹开裂倾向有重要影响。利用有限元法对激光多道搭接过程熔覆层的残余应力和应变进行计算,计算过程中主要考虑瞬时温度变化引起的热应力、σ-ε曲线、有限元网格、力学边界条件4个方面。热应力主要在温度场计算结果的基础上求得;σ-ε曲线采用的是线性强化材料的弹塑性曲线;有限元网格主要采用分区划分的形式进行。通过计算,得到了搭接后的熔覆层上关键点的残余应力和应变分别为1 400 MPa和2.2×10^-2。结果表明:搭接熔覆层交界处的点产生焊趾裂纹的倾向最大,第1道熔覆顶点处产生横向裂纹的倾向次之。  相似文献   

17.
破片模拟弹侵彻钢板的有限元分析   总被引:2,自引:0,他引:2  
根据破片模拟弹侵彻钢板的实验研究,采用MSC.Dytran对破片模拟弹侵彻钢板的侵彻过程、侵彻特性、钢板的破坏模式以及弹体的侵彻速度、靶板的侵彻阻力进行了有限元分析,并将分析结果与实验结果进行了比较.分析结果表明,破片模拟弹冲击钢装甲的侵彻过程可大致分为初始接触、弹体侵入、剪切冲塞和穿甲破坏4个阶段.有限元分析的破片模拟弹侵彻特性及靶板破坏模式与实验观测结果有较好的一致性,在靶板破口的正面,与弹体平面凸缘两端接触的部分,变形以剪切为主,而与切削面接触的部分,以挤压变形为主;靶板破口背面为剪切冲塞破坏;有限元模拟的弹体剩余速度与实验结果吻合较好,弹体侵彻过程中弹靶作用界面的速度和侵彻速度近似呈线性变化.有限元分析结果还表明,采用适当的模型,有限元法能较好地模拟破片模拟弹侵彻钢板的侵彻过程、侵彻特性以及钢板的破坏模式.  相似文献   

18.
Changing and optimizing the projectile nose shape is an important way to achieve specific ballistic performance. One special ballistic performance is the embedding effect, which can achieve a delayed high-explosive reaction on the target surface. This embedding effect includes a rebound phase that is significantly different from the traditional penetration process. To better study embedment behavior, this study proposed a novel nose shape called an annular grooved projectile and defined its interaction process with the ductile metal plate as partial penetration. Specifically, we conducted a series of low-velocity-ballistic tests in which these steel projectiles were used to strike 16-mm-thick target plates made with 2024-O aluminum alloy. We observed the dynamic evolution characteristics of this aluminum alloy near the impact craters and analyzed these characteristics by corresponding cross-sectional views and numerical simulations. The results indicated that the penetration resistance had a brief decrease that was influenced by its groove structure, but then it increased significantly-that is, the fluctuation of penetration resistance was affected by the irregular nose shape. Moreover, we visualized the distribution of the material in the groove and its inflow process through the rheology lines in microscopic tests and the highlighted mesh lines in simulations. The combination of these phenomena revealed the embed-ment mechanism of the annular grooved projectile and optimized the design of the groove shape to achieve a more firm embedment performance. The embedment was achieved primarily by the target material filled in the groove structure. Therefore, preventing the shear failure that occurred on the filling material was key to achieving this embedding effect.  相似文献   

19.
针对要计算出水中弹道数据,基于Ls-Dyna软件建立了弹-水耦合模型并进行了仿真,水采用MAT_NULL模型和Gruneisen状态方程,弹采用弹塑性材料即MAT_Plastic_Kinematic模型,并在水-弹之间添加控制耦合的关键字,建立了完整的模型,定义了计算模型。数值仿真结果表明:水下弹速度下降很快,由于升力因素存在偏航现象,同时在弹后空间形成逐步拉长而且径向扩大的空腔,形成负压阻碍弹丸运动。  相似文献   

20.
某型火箭炮是新型的主战装备,对其战术技术性能的研究具有重要意义。采用仿真的方法对该型武器系统对目标的毁伤过程进行研究,可以大大节约实弹射击所需经费,并且可以动态地观察毁伤过程的细节。根据某型火箭炮弹抛撒子弹模型及子弹毁伤目标性能指标,采用理论分析和计算机模拟手段,对该型火箭炮弹对面积目标的毁伤过程进行了仿真,并得出了毁伤效率随子弹枚数和CEP的变化规律。研究成果对该型武器系统的作战运用具有借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号