首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single- and multi-facility location problems are often solved with iterative computational procedures. Although these procedures have proven to converage, in practice it is desirable to be able to compute a lower bound on the objective function at each iteration. This enables the user to stop the iterative process when the objective function is within a prespecified tolerance of the optimum value. In this article we generalize a new bounding method to include multi-facility problems with lp distances. A proof is given that for Euclidean distance problems the new bounding procedure is superior to two other known methods. Numerical results are given for the three methods.  相似文献   

2.
This article is concerned with the optimal location of any number (n) of facilities in relation to any number (m) of destinations on the Euclidean plane. The criterion to be satisfied is the minimization of total weighted distances where the distances are rectangular. The destinations may be either single points, lines or rectangular areas. A gradient reduction solution procedure is described which has the property that the direction of descent is determined by the geometrical properties of the problem.  相似文献   

3.
This article concerns the location of a facility among n points where the points are serviced by “tours” taken from the facility. Tours include m points at a time and each group of m points may become active (may need a tour) with some known probability. Distances are assumed to be rectilinear. For m ≤ 3, it is proved that the objective function is separable in each dimension and an exact solution method is given that involves finding the median of numbers appropriately generated from the problem data. It is shown that the objective function becomes multimodal when some tours pass through four or more points. A bounded heuristic procedure is suggested for this latter case. This heuristic involves solving an auxiliary three-point tour location problem.  相似文献   

4.
In this paper we consider the capacitated multi‐facility Weber problem with the Euclidean, squared Euclidean, and ?p‐distances. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the distance between them. We first present a mixed integer linear programming approximation of the problem. We then propose new heuristic solution methods based on this approximation. Computational results on benchmark instances indicate that the new methods are both accurate and efficient. © 2006 Wiley Periodicals, Inc. Naval Research Logistics 2006  相似文献   

5.
A method is presented to locate and allocate p new facilities in relation to n existing facilities. Each of the n existing facilities has a requirement flow which must be supplied by the new facilities. Rectangular distances are assumed to exist between all facilities. The algorithm proceeds in two stages. In the first stage a set of all possible optimal new facility locations is determined by a set reduction algorithm. The resultant problem is shown to be equivalent to finding the p-median of a weighted connected graph. In the second stage the optimal locations and allocations are obtained by using a technique for solving the p-median problem.  相似文献   

6.
The discounted return associated with a finite state Markov chain X1, X2… is given by g(X1)+ αg(X2) + α2g(X3) + …, where g(x) represents the immediate return from state x. Knowing the transition matrix of the chain, it is desired to compute the expected discounted return (present worth) given the initial state. This type of problem arises in inventory theory, dynamic programming, and elsewhere. Usually the solution is approximated by solving the system of linear equations characterizing the expected return. These equations can be solved by a variety of well-known methods. This paper describes yet another method, which is a slight modification of the classical iterative scheme. The method gives sequences of upper and lower bounds which converge mono-tonely to the solution. Hence, the method is relatively free of error control problems. Computational experiments were conducted which suggest that for problems with a large number of states, the method is quite efficient. The amount of computation required to obtain the solution increases much slower with an increase in the number of states, N, than with the conventional methods. In fact, computational time is more nearly proportional to N2, than to N3.  相似文献   

7.
An iterative solution method is presented for solving the multifacility location problem with Euclidean distances under the minimax criterion. The iterative procedure is based on the transformation of the multifacility minimax problem into a sequence of squared Euclidean minisum problems which have analytical solutions. Computational experience with the new method is also presented.  相似文献   

8.
In this journal in 1967. Szware presented an algorithm for the optimal routing of a common vehicle fleet between m sources and n sinks with p different types of commodities. The main premise of the formulation is that a truck may carry only one commodity at a time and must deliver the entire load to one demand area. This eliminates the problem of routing vehicles between sources or between sinks and limits the problem to the routing of loaded trucks between sources and sinks and empty trucks making the return trip. Szwarc considered only the transportation aspect of the problem (i. e., no intermediate points) and presented a very efficient algorithm for solution of the case he described. If the total supply is greater than the total demand, Szwarc shows that the problem is equivalent to a (mp + n) by (np + m) Hitchcock transportation problem. Digital computer codes for this algorithm require rapid access storage for a matrix of size (mp + n) by (np + m); therefore, computer storage required grows proportionally to p2. This paper offers an extension of his work to a more general form: a transshipment network with capacity constraints on all arcs and facilities. The problem is shown to be solvable directly by Fulkerson's out-of-kilter algorithm. Digital computer codes for this formulation require rapid access storage proportional to p instead of p2. Computational results indicate that, in addition to handling the extensions, the out-of-kilter algorithm is more efficient in the solution of the original problem when there is a mad, rate number of commodities and a computer of limited storage capacity.  相似文献   

9.
A new method for the solution of minimax and minisum location–allocation problems with Euclidean distances is suggested. The method is based on providing differentiable approximations to the objective functions. Thus, if we would like to locate m service facilities with respect to n given demand points, we have to minimize a nonlinear unconstrained function in the 2m variables x1,y1, ?,xm,ym. This has been done very efficiently using a quasi-Newton method. Since both the original problems and their approximations are neither convex nor concave, the solutions attained may be only local minima. Quite surprisingly, for small problems of locating two or three service points, the global minimum was reached even when the initial position was far from the final result. In both the minisum and minimax cases, large problems of locating 10 service facilities among 100 demand points have been solved. The minima reached in these problems are only local, which is seen by having different solutions for different initial guesses. For practical purposes, one can take different initial positions and choose the final result with best values of the objective function. The likelihood of the best results obtained for these large problems to be close to the global minimum is discussed. We also discuss the possibility of extending the method to cases in which the costs are not necessarily proportional to the Euclidean distances but may be more general functions of the demand and service points coordinates. The method also can be extended easily to similar three-dimensional problems.  相似文献   

10.
An equity model between groups of demand points is proposed. The set of demand points is divided into two or more groups. For example, rich and poor neighborhoods and urban and rural neighborhoods. We wish to provide equal service to the different groups by minimizing the deviation from equality among groups. The distance to the closest facility is a measure of the quality of service. Once the facilities are located, each demand point has a service distance. The objective function, to be minimized, is the sum of squares of differences between all pairs of service distances between demand points in different groups. The problem is analyzed and solution techniques are proposed for the location of a single facility in the plane. Computational experiments for problems with up to 10,000 demand points and rectilinear, Euclidean, or general ?p distances illustrate the efficiency of the proposed algorithm. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
In the multifacility location problem, a number of new facilities are to be located so as to minimize a sum of weighted distances. Recently, a lower bound on the optimal value was developed, for use in deciding when to stop an iterative solution procedure. We develop a stronger bound that allows some computational savings.  相似文献   

12.
We address the so‐called maximum dispersion problems where the objective is to maximize the sum or the minimum of interelement distances amongst a subset chosen from a given set. The problems arise in a variety of contexts including the location of obnoxious facilities, the selection of diverse groups, and the identification of dense subgraphs. They are known to be computationally difficult. In this paper, we propose a Lagrangian approach toward their solution and report the results of an extensive computational experimentation. Our results show that our Lagrangian approach is reasonably fast, that it yields heuristic solutions which provide good lower bounds on the optimum solution values for both the sum and the minimum problems, and further that it produces decent upper bounds in the case of the sum problem. For the sum problem, the results also show that the Lagrangian heuristic compares favorably against several existing heuristics. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 97–114, 2000  相似文献   

13.
The coverage C of area targets by salvos of weapons generally varies randomly, because of random target location and weapon impact point fluctuations. A third source of variation appears when, instead of an area target, a multiple-element target is considered, consisting of m point targets distributed randomly and independently of one another around the target center. A multiple-integral expression is derived for the probability pk of killing exactly k target elements. It is shown that pk is a linear function of the higher moments, of the order k to m, of the area coverage C. More explicit expressions are derived for the case of two weapons and for circular-symmetric functions. Similar to well-known results for the expectation and variance of coverage of area targets, these expressions can be evaluated by numerical quadrature. Furthermore, the coverage problem in which all underlying functions are Gaussian can be completely solved in closed form. For such a problem, with two weapons, numerical results are presented. They show that the distribution of k can be approximated by a binomial distribution only if the target center and weapon impact point fluctuations are small.  相似文献   

14.
This paper addresses the problem of computing the expected discounted return in finite Markov and semi-Markov chains. The objective is to reveal insights into two questions. First, which iterative methods hold the most promise? Second, when are interative methods preferred to Gaussian elimination? A set of twenty-seven randomly generated problems is used to compare the performance of the methods considered. The observations that apply to the problems generated here are as follows: Gauss-Seidel is not preferred to Pre-Jacobi in general. However, if the matrix is reordered in a certain way and the author's row sum extrapolation is used, then Gauss-Seidel is preferred. Transforming a semi-Markov problem into a Markov one using a transformation that comes from Schweitzer does not yield improved performance. A method analogous to symmetric successive overrelaxation (SSOR) in numerical analysis yields improved performance, especially when the row-sum extrapolation is used only sparingly. This method is then compared to Gaussian elimination and is found to be superior for most of the problems generated.  相似文献   

15.
Extending Sastry's result on the uncapacitated two‐commodity network design problem, we completely characterize the optimal solution of the uncapacitated K‐commodity network design problem with zero flow costs for the case when K = 3. By solving a set of shortest‐path problems on related graphs, we show that the optimal solutions can be found in O(n3) time when K = 3, where n is the number of nodes in the network. The algorithm depends on identifying a list of “basic patterns”; the number of basic patterns grows exponentially with K. We also show that the uncapacitated K‐commodity network design problem can be solved in O(n3) time for general K if K is fixed; otherwise, the time for solving the problem is exponential. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

16.
This paper studies load balancing for many-server (N servers) systems. Each server has a buffer of size b ? 1, and can have at most one job in service and b ? 1 jobs in the buffer. The service time of a job follows the Coxian-2 distribution. We focus on steady-state performance of load balancing policies in the heavy traffic regime such that the normalized load of system is λ = 1 ? N?α for 0 < α < 0.5. We identify a set of policies that achieve asymptotic zero waiting. The set of policies include several classical policies such as join-the-shortest-queue (JSQ), join-the-idle-queue (JIQ), idle-one-first (I1F) and power-of-d-choices (Po d) with d = O(Nα log N). The proof of the main result is based on Stein's method and state space collapse. A key technical contribution of this paper is the iterative state space collapse approach that leads to a simple generator approximation when applying Stein's method.  相似文献   

17.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   

18.
A series of independent trials is considered in which one of k ≥ 2 mutually exclusive and exhaustive outcomes occurs at each trial. The series terminates when m outcomes of any one type have occurred. The limiting distribution (as m → ∞) of the number of trials performed until termination is found with particular attention to the situation where a Dirichlet distribution is assigned to the k vector of probabilities for each outcome. Applications to series of races involving k runners and to spares problems in reliability modeling are discussed. The problem of selecting a stopping rule so that the probability of the series terminating on outcome i is k?1 (i.e., a “fair” competition) is also studied. Two generalizations of the original asymptotic problem are addressed.  相似文献   

19.
We consider a single-machine problem of scheduling n independent jobs to minimize makespan, in which the processing time of job Jj grows by wj with each time unit its start is delayed beyond a given common critical date d. This processing time is pj if Jj starts by d. We show that this problem is NP-hard, give a pseudopolynomial algorithm that runs in time and O(nd) space, and develop a branch-and-bound algorithm that solves instances with up to 100 jobs in a reasonable amount of time. We also introduce the case of bounded deterioration, where the processing time of a job grows no further if the job starts after a common maximum deterioration date D > d. For this case, we give two pseudopolynomial time algorithms: one runs in O(n2d(D − d) time and O(nd(D − d)) space, the other runs in pj)2) time and pj) space. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 511–523, 1998  相似文献   

20.
Suppose we are given a network G=(V,E) with arc distances and a linear cost function for lengthening arcs. In this note, we consider a network-interdiction problem in which the shortest path from source node s to sink node t is to be increased to at least τ units via a least-cost investment strategy. This problem is shown to reduce to a simple minimum-cost-flow problem. Applications and generalizations are discussed, including the multiple-destination case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号