首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《防务技术》2020,16(2):341-347
One-dimensional simulations with a detailed hydrogen-oxygen reaction mechanism have been performed to investigate detonation phenomenon in a combustion light gas gun (CLGG). Convection fluxes of the Navier-Stokes equations are solved using the WAF (weighted average flux) scheme HLLC Riemann solver. A high resolution fifth-order WENO scheme for the variable extrapolation at the volume interface and a fourth-order Runge-Kutta scheme for the time advancement are used. Validation tests of the stoichiometric hydrogen-oxygen deflagration to detonation transition process shows good agreement between the computed results and the analytical and documented solutions, demonstrating the reliability on the detonation simulation of the current scheme. Simulation results of the interior ballistic process of the CLGG show that the flame propagation experiences three distinct stages. The blast detonation wave causes a high-pressure shock and hazardous oscillations in the chamber and makes the projectile accelerate with fluctuations, but has only a small improvement to the muzzle velocity.  相似文献   

2.
《防务技术》2014,10(3):294-297
The detonation of an explosive atmosphere from liquefied petroleum gas disseminated in air in a confined space is studied using numerical modeling with software product ANSYS AUTODYN.  相似文献   

3.
针对军用软件特点,提出并定义一种基于任务剖面的软件系统结构准则;基于该准则,给出一种从功能可靠性、事件可靠性到任务可靠性的分层可靠性预计方法。与侧重于数学建模的相关工作不同,该方法更注重在建模中融合软件可靠性设计、测试和管理,成为可靠性保证的一种途径。  相似文献   

4.
《防务技术》2022,18(9):1552-1562
To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine (SRE) in storage or transportation, protective armor was designed and the shelled charges model (SCM)/SRE with protective armor impacting by shaped charge tests were conducted. Air overpressures at 5 locations and axial acceleration caused by the explosion were measured, and the experimental results were compared with two air overpressure curves of propellant detonation obtained by related scholars. Afterwards, the finite element software AUTODYN was used to simulate the SCM impacted process and SRE detonation results. The penetration process and the formation cause of damage were analyzed. The detonation performance of TNT, reference propellant, and the propellant used in this experiment was compared. The axial acceleration caused by the explosion was also analyzed. By comprehensive comparison, the energy released by the detonation of this propellant is larger, and the HMX or Al particles contained in this propellant are more than the reference propellant, with a TNT equivalent of 1.168–1.196. Finally, advanced protection armor suggestions were proposed based on the theory of woven fabric rubber composite armor (WFRCA).  相似文献   

5.
超算环境中科学工作流技术广泛应用于科学研究和工程仿真领域。复杂多物理过程数值模拟、多阶段数据处理等应用往往需要使用多种应用软件相互协作,构建业务流程自动执行来提升工作效率。然而在超算环境中执行科学工作流应用面临着资源失效、任务配置错误等异常情况,造成工作流执行中断,严重影响完成效率,故容错功能对超算工作流应用的稳定持续运行有重要意义。介绍了科学工作流的容错设计分类,并对典型工作流系统的容错设计进行分析评述;提出了基于决策树的事件-条件-动作容错模型,设计了非侵入式可扩展的容错架构,并针对自主研发的部署在超算环境下的科学工作流应用平台HSWAP,实现了运行时可配置的容错策略。在实际的工程仿真任务中,基于所提出模型和架构实现的容错机制为提高工作流执行效率发挥了重要作用。  相似文献   

6.
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the param-eters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 μs throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 μs higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.  相似文献   

7.
《防务技术》2020,16(1):178-187
An experimental platform of a pulse detonation engine (PDE) was established to study the effect of different K2CO3 ionized seed mass contents on the detonation process. The pressure and ion concentration were detected in the detonation process of the PDE with different contents of ionized seeds. The initiation process of the PDE at different ignition frequencies was studied. The results show that the gas conductivity in the detonation process increased by adding ionized seeds to the PDE tube, and the conductivity increased with the increase in ionized seed mass content. With the increase in ionized seed mass content, the range of the conductivity decreased. The PDE was successfully ignited and formed a stable detonation wave at ignition frequencies of 5 Hz and 10 Hz, and the peak pressure of the stable detonation with the ignition frequency of 5 Hz was 17% higher than that with an ignition frequency of 10 Hz. The detonation wave intensity was weakened and degenerated to a shock wave that propagated in the tube without the fuel filled at the ignition frequency of 20 Hz.  相似文献   

8.
根据典型舰载单脉冲跟踪雷达的组成及工作原理,介绍一种舰载单脉冲跟踪雷达仿真建模方法。重点描述了仿真原理及仿真模型组成,介绍了雷达信号特性仿真、雷达伺服系统仿真、雷达信号处理系统仿真等关键环节的数学仿真模型。结合仿真软件功能需求,给出了软件结构、软件运行流程等仿真软件设计要点。  相似文献   

9.
叙述了以太网交换机的结构、端口缓存交换策略,从排队论出发建立仿真模型和仿真流程,按数理统计原理用t函数进行均值假设检验,验证仿真模型及流程的可信度。文章叙述以太网交换机仿真模型与算法对进行计算机网络仿真有参考价值。  相似文献   

10.
The failure mechanism of a cylindrical shell cut into fragments by circumferential detonation collision was experimentally and numerically investigated. A self-designed detonation wave regulator was used to control the detonation and cut the shell. It was found that the self-designed regulator controlled the fragment shape. The macrostructure and micro-characteristics of fragments revealed that shear fracture was a prior mechanism, the shell fractured not only at the position of detonation collision, but the crack also penetrated the shell at the first contact position of the Chapmen-Jouguet (C-J) wave. The effects of groove number and outer layer thickness on the fracture behavior were tested by simulations. When the thickness of the outer layer was 5–18 mm, it has little effect on fragmentation of the shell, and shells all fractured at similar positions. The increase of the groove number reduced the fracture possibility of the first contact position of the C-J wave. When the groove number reached 7 with a 10 mm outer layer (1/4 model), the fracture only occurred at the position of detonation collision and the fragment width rebounded.  相似文献   

11.
Explosive welding technique is widely used in many industries. This technique is useful to weld different kinds of metal alloys that are not easily welded by any other welding methods. Interlayer plays an important role to improve the welding quality and control energy loss during the collision process. In this paper, the Ti6Al4V plate was welded with a copper plate in the presence of a commercially pure titanium interlayer. Microstructure details of welded composite plate were observed through optical and scanning electron microscope. Interlayer-base plate interface morphology showed a wavy structure with solid melted regions inside the vortices. Moreover, the energy dispersive spectroscopy analysis in the interlayer-base interface reveals that there are some identified regions of different kinds of chemical equilibrium phases of Cu–Ti, i.e. CuTi, Cu2Ti, CuTi2, Cu4Ti, etc. To study the mechanical properties of composite plates, mechanical tests were conducted, including the tensile test, bending test, shear test and Vickers hardness test. Numerical simulation of explosive welding process was performed with coupled Smooth Particle Hydrodynamic method, Euler and Arbitrary Lagrangian-Eulerian method. The multi-physics process of explosive welding, including detonation, jetting and interface morphology, was observed with simulation. Moreover, simulated plastic strain, temperature and pressure profiles were analysed to understand the welding conditions. Simulated results show that the interlayer base plate interface was created due to the high plastic deformation and localized melting of the parent plates. At the collision point, both alloys behave like fluids, resulting in the formation of a wavy morphology with vortices, which is in good agreement with the experimental results.  相似文献   

12.
《防务技术》2022,18(12):2198-2202
In view of the difficulty of kerosene-air detonation faced by the application of rotating detonation to aviation engines, in order to improve the kerosene detonation activity, the atmospheric pressure gliding arc plasma is used to conduct secondary adjustment of the pre-combustion cracking products. The results show that the components with larger molecular weight in the pre-combustion cracking products, such as ethylene and methane, can be cracked into highly active species of hydrogen and acetylene by gliding arc plasma. With the increase of the fuel ratio of pre-combustion cracking, the plasma has a more significant effect on the adjustment of high active components. However, as the flow rate of the cracking gas treated by plasma increases, the adjustment effect is obviously reduced.  相似文献   

13.
研究MAS在装备综合保障仿真中应用的方法与工作流程,结合实际应用系统的设计与开发,将基于Agent的离散事件仿真建模技术引入系统RMS建模与仿真研究中,开发了一个原型系统,并进行了实验验证。研究证明,基于Agent的建模与仿真方法可用于大型复杂装备综合保障系统的建模与仿真。  相似文献   

14.
《防务技术》2020,16(2):487-492
A well-known ternary plastic explosive, Czech Semtex 1H, contains a mixture of PETN and RDX softened by SBR. In this work, BCHMX was used to replace PETN in Semtex 1H to form Sem-BC+RDX. In addition, another mixture based on BCHMX and HMX as energetic fillers bonded by the polymeric matrix of Semtex 1H (Sem-BC+HMX) was studied. The particle size distribution of each individual explosive was determined to obtain the optimum mixing conditions. Friction and impact sensitivities were determined. The velocity of detonation was reported practically and the detonation properties were calculated by EXPLO5 code. The explosive strength of each sample was measured by the ballistic mortar test. The conclusion confirms that the velocity of detonation of Sem-BC+HMX was the highest in comparison with the prepared samples. Sem-BC+RDX has the least impact and frictions sensitivities. Sem-BC+RDX has higher detonation velocity, detonation properties and explosive strength than Semtex 1H. Addition of BCHMX in Semtex 1H as a replacement for PETN is the candidate to produce a high performance advanced Czech plastic explosive.  相似文献   

15.
《防务技术》2014,10(2):219-225
Global effects caused by the detonation of an IED near a military vehicle induce subsequent severe acceleration effects on the vehicle occupants. Two concepts to minimize these global effects were developed, with the help of a combined method based on a scaled experimental technology and numerical simulations. The first concept consists in the optimization of the vehicle shape to reduce the momentum transfer and thus the occupant loading. Three scaled V-shaped vehicles with different ground clearances were built and compared to a reference vehicle equipped with a flat floor. The second concept, called dynamic impulse compensation (DIC), is based on a momentum compensation technique. The principal possibility of this concept was demonstrated on a scaled vehicle. In addition, the numerical simulations have been performed with generic full size vehicles including dummy models, proving the capability of the DIC technology to reduce the occupant loading.  相似文献   

16.
《防务技术》2022,18(9):1538-1545
3-nitro-1,2,4-tri-azol-5-one (NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1 (32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity (7746 m/s) and the parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shock-initiation gap experiment and numerical simulation. The determined trinomial ignition and growth model (IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.  相似文献   

17.
Quantile is an important quantity in reliability analysis, as it is related to the resistance level for defining failure events. This study develops a computationally efficient sampling method for estimating extreme quantiles using stochastic black box computer models. Importance sampling has been widely employed as a powerful variance reduction technique to reduce estimation uncertainty and improve computational efficiency in many reliability studies. However, when applied to quantile estimation, importance sampling faces challenges, because a good choice of the importance sampling density relies on information about the unknown quantile. We propose an adaptive method that refines the importance sampling density parameter toward the unknown target quantile value along the iterations. The proposed adaptive scheme allows us to use the simulation outcomes obtained in previous iterations for steering the simulation process to focus on important input areas. We prove some convergence properties of the proposed method and show that our approach can achieve variance reduction over crude Monte Carlo sampling. We demonstrate its estimation efficiency through numerical examples and wind turbine case study.  相似文献   

18.
为降低传统层次分析法(analytic hierarchy process,AHP)赋权过程主观片面性影响,提出了一种综合AHP与Arena仿真建模技术的无人机训练资源配置效率评价方法。基于飞行训练流程分析,确定了训练资源配置效率影响因素和效率评价指标,建立了层次型综合评价体系,概括了AHP-Arena综合评价步骤。利用Arena建模软件构建训练流程动态仿真系统并验证有效性,采用单变量数值仿真法、均方差决策法完成了影响因素客观赋权,通过线性加权综合法得出综合评价系数,实现资源配置效率评价与方案优选。实例应用说明了该方法的有效性,同时,该方法可推广至其他类似的训练过程中,亦可为其他多因素、多指标评价决策过程提供借鉴。  相似文献   

19.
建立了Kagome点阵夹层板在爆炸冲击荷载作用下的数值模拟模型,计算分析了夹层板的面板厚度、夹芯层杆件半径以及爆炸冲击荷载峰值压力和作用时间对Kagome点阵夹层板吸能性能的影响。发现在给定的爆炸冲击荷载作用下,夹层板只有在合适的几何尺寸下才能使夹芯层的塑性变形能占整个结构塑性变形能的大部分,从而体现出该夹层板主要由夹芯层塑性变形耗能的优势。  相似文献   

20.
This paper investigates the potential for modeling and simulation to contribute to new defense system development, by increasing the productivity of traditional R&D in developing system‐specific technology. Building on a previous optimal control model of defense system R&D, it shows that (1) the optimal use of modeling is related in a natural way to that of traditional R&D, and (2) both have similar optimal profiles over time. Simulated results based on limited historical data suggest that optimal use of modeling could increase the rate of growth in system‐specific technology significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号