首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   19篇
  2019年   26篇
  2018年   17篇
  2017年   15篇
  2016年   17篇
  2015年   16篇
  2014年   9篇
  2013年   145篇
  2011年   13篇
  2010年   8篇
  2009年   7篇
  2008年   7篇
  2007年   13篇
  2006年   8篇
  2005年   16篇
  2004年   8篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   10篇
  1999年   11篇
  1998年   6篇
  1997年   12篇
  1996年   15篇
  1995年   7篇
  1994年   16篇
  1993年   9篇
  1992年   10篇
  1991年   17篇
  1990年   11篇
  1989年   16篇
  1988年   6篇
  1986年   10篇
  1985年   13篇
  1984年   10篇
  1983年   9篇
  1982年   6篇
  1981年   8篇
  1980年   10篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   8篇
  1974年   12篇
  1973年   11篇
  1972年   13篇
  1971年   15篇
  1970年   6篇
  1969年   7篇
  1968年   7篇
排序方式: 共有695条查询结果,搜索用时 156 毫秒
51.
The reliability of weapons in combat has been treated by Bhashyam in the context of a stochastic duel characterized by fixed ammunition supplies. negative exponentially distributed firing times and weapon lifetimes, and a fixed number of spare weapons for each duelist. The present paper takes a different approach by starting with the fundamental duel of Ancker and Williams, characterized by unlimited ammunition and by ordinary renewal firing times, and adding to it weapon lifetimes which can be functions of time or of round position in the firing sequence. Probabilities of winning and tieing are derived and it is shown that under certain conditions the weapon lifetimes are equivalent to random time and ammunition limits.  相似文献   
52.
Models are formulated for determining continuous review (Q, r) policies for a multiitem inventory subject to constraints. The objective function is the minimization of total time-weighted shortages. The constraints apply to inventory investment and reorder workload. The formulations are thus independent of the normal ordering, holding, and shortage costs. Two models are presented, each representing a convex programming problem. Lagrangian techniques are employed with the first, simplified model in which only the reorder points are optimized. In the second model both the reorder points and the reorder quantities are optimized utilizing penalty function methods. An example problem is solved for each model. The final section deals with the implementation of these models in very large inventory systems.  相似文献   
53.
54.
55.
Allocation of scarce common components to finished product orders is central to the performance of assembly systems. Analysis of these systems is complex, however, when the product master schedule is subject to uncertainty. In this paper, we analyze the cost—service performance of a component inventory system with correlated finished product demands, where component allocation is based on a fair shares method. Such issuing policies are used commonly in practice. We quantify the impact of component stocking policies on finished product delays due to component shortages and on product order completion rates. These results are used to determine optimal base stock levels for components, subject to constraints on finished product service (order completion rates). Our methodology can help managers of assembly systems to (1) understand the impact of their inventory management decisions on customer service, (2) achieve cost reductions by optimizing their inventory investments, and (3) evaluate supplier performance and negotiate contracts by quantifying the effect of delivery lead times on costs and customer service. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:409–429, 2001  相似文献   
56.
This paper develops and applies a nonparametric bootstrap methodology for setting inventory reorder points and a simple inequality for identifying existing reorder points that are unreasonably high. We demonstrate that an empirically based bootstrap method is both feasible and calculable for large inventories by applying it to the 1st Marine Expeditionary Force General Account, an inventory consisting of $20–30 million of stock for 10–20,000 different types of items. Further, we show that the bootstrap methodology works significantly better than the existing methodology based on mean days of supply. In fact, we demonstrate performance equivalent to the existing system with a reduced inventory at one‐half to one‐third the cost; conversely, we demonstrate significant improvement in fill rates and other inventory performance measures for an inventory of the same cost. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 459–478, 2000  相似文献   
57.
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is N P‐hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst‐case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two‐machine flow shop and the open shop problems with a single server are also shown to be N P‐hard in the strong sense. However, we reduce the two‐machine flow shop no‐wait problem with a single server to the Gilmore—Gomory traveling salesman problem and solve it in polynomial time. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 304–328, 2000  相似文献   
58.
We present an air-defense engagement model to counter an attack by multiple antiship missiles, assuming perfect kill assessment. In this model, the probability of shooting down all incoming missiles is maximized. A generating function is employed to produce an algorithm which is used to evaluate the outcomes. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 687–697, 1997  相似文献   
59.
We develop a simple algorithm, which does not require convolutions, for computing the distribution of the residual life when the renewal process is discrete. We also analyze the algorithm for the particular case of lattice distributions, and we show how it can apply to an inventory problem. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 435–443, 1999  相似文献   
60.
We examine two key stochastic processes of interest for warranty modeling: (1) remaining total warranty coverage time exposure and (2) warranty load (total items under warranty at time t). Integral equations suitable for numerical computation are developed to yield probability law for these warranty measures. These two warranty measures permit warranty managers to better understand time‐dependent warranty behavior, and thus better manage warranty cash reserves. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号