首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   2篇
  2021年   1篇
  2019年   4篇
  2018年   5篇
  2017年   8篇
  2016年   4篇
  2014年   2篇
  2013年   22篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  2000年   3篇
  1998年   2篇
  1995年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1969年   1篇
  1968年   1篇
排序方式: 共有108条查询结果,搜索用时 46 毫秒
41.
42.
43.
44.
Consider a simulation experiment consisting of v independent vector replications across k systems, where in any given replication one system is selected as the best performer (i.e., it wins). Each system has an unknown constant probability of winning in any replication and the numbers of wins for the individual systems follow a multinomial distribution. The classical multinomial selection procedure of Bechhofer, Elmaghraby, and Morse (Procedure BEM) prescribes a minimum number of replications, denoted as v*, so that the probability of correctly selecting the true best system (PCS) meets or exceeds a prespecified probability. Assuming that larger is better, Procedure BEM selects as best the system having the largest value of the performance measure in more replications than any other system. We use these same v* replications across k systems to form (v*)k pseudoreplications that contain one observation from each system, and develop Procedure AVC (All Vector Comparisons) to achieve a higher PCS than with Procedure BEM. For specific small-sample cases and via a large-sample approximation we show that the PCS with Procedure AVC exceeds the PCS with Procedure BEM. We also show that with Procedure AVC we achieve a given PCS with a smaller v than the v* required with Procedure BEM. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 459–482, 1998  相似文献   
45.
The problem dealt with in this article is as follows. There are n “demand points” on a sphere. Each demand point has a weight which is a positive constant. A facility must be located so that the maximum of the weighted distances (distances are the shortest arcs on the surface of the sphere) is minimized; this is called the minimax problem. Alternatively, in the maximin problem, the minimum weighted distance is maximized. A setup cost associated with each demand point may be added for generality. It is shown that any maximin problem can be reparametrized into a minimax problem. A method for finding local minimax points is described and conditions under which these are global are derived. Finally, an efficient algorithm for finding the global minimax point is constructed.  相似文献   
46.
47.
The extreme spread, or greatest distance between all pairs of impact points on a target, is often used as a rapid measure of dispersion or precision of shot groups on a target. It is therefore desirable to know its statistical properties. Since the exact theoretical distribution has not yet been worked out, this paper examines the accuracy of several approximations which are checked against large sample monte carlo values. We find in particular that for the sample sizes considered the extreme spread can be approximated well by a Chi variate.  相似文献   
48.
In this paper we present some results in parametric studies on several transportation-type problems. Specifically, a characterization is obtained for the optimal values of the variables in the problem of determining an optimal growth path in a logistics system. We also derive an upper bound beyond which the optimal growth path remains the same. The results are then extended to the goal programming model and the prespecified market growth rate problem.  相似文献   
49.
In this paper we consider a multiperiod deterministic capacity expansion and shipment planning problem for a single product. The product can be manufactured in several producing regions and is required in a number of markets. The demands for each of the markets are non-decreasing over time and must be met exactly during each time period (i.e., no backlogging or inventorying for future periods is permitted). Each region is assumed to have an initial production capacity, which may be increased at a given cost in any period. The demand in a market can be satisfied by production and shipment from any of the regions. The problem is to find a schedule of capacity expansions for the regions and a schedule of shipments from the regions to the markets so as to minimize the discounted capacity expansion and shipment costs. The problem is formulated as a linear programming model, and solved by an efficient algorithm using the operator theory of parametric programming for the transporation problem. Extensions to the infinite horizon case are also provided.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号