首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   5篇
  2021年   3篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
  1992年   1篇
  1989年   2篇
  1980年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
31.
This paper proposes a skewness correction (SC) method for constructing the and R control charts for skewed process distributions. Their asymmetric control limits (about the central line) are based on the degree of skewness estimated from the subgroups, and no parameter assumptions are made on the form of process distribution. These charts are simply adjustments of the conventional Shewhart control charts. Moreover, the chart is almost the same as the Shewhart chart if the process distribution is known to be symmetrical. The new charts are compared with the Shewhart charts and weighted variance (WV) control charts. When the process distribution is in some neighborhood of Weibull, lognormal, Burr or binomial family, simulation shows that the SC control charts have Type I risk (i.e., probability of a false alarm) closer to 0.27% of the normal case. Even in the case where the process distribution is exponential with known mean, not only the control limits and Type I risk, but also the Type II risk of the SC charts are closer to those of the exact and R charts than those of the WV and Shewhart charts. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 555–573, 2003  相似文献   
32.
Todas information and communication network requires a design that is secure to tampering. Traditional performance measures of reliability and throughput must be supplemented with measures of security. Recognition of an adversary who can inflict damage leads toward a game‐theoretic model. Through such a formulation, guidelines for network designs and improvements are derived. We opt for a design that is most robust to withstand both natural degradation and adversarial attacks. Extensive computational experience with such a model suggests that a Nash‐equilibrium design exists that can withstand the worst possible damage. Most important, the equilibrium is value‐free in that it is stable irrespective of the unit costs associated with reliability vs. capacity improvement and how one wishes to trade between throughput and reliability. This finding helps to pinpoint the most critical components in network design. From a policy standpoint, the model also allows the monetary value of information‐security to be imputed. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
33.
In this article, a mixture of Type‐I censoring and Type‐II progressive censoring schemes, called an adaptive Type‐II progressive censoring scheme, is introduced for life testing or reliability experiments. For this censoring scheme, the effective sample size m is fixed in advance, and the progressive censoring scheme is provided but the number of items progressively removed from the experiment upon failure may change during the experiment. If the experimental time exceeds a prefixed time T but the number of observed failures does not reach m, we terminate the experiment as soon as possible by adjusting the number of items progressively removed from the experiment upon failure. Computational formulae for the expected total test time are provided. Point and interval estimation of the failure rate for exponentially distributed failure times are discussed for this censoring scheme. The various methods are compared using Monte Carlo simulation. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号