首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   3篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   10篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   69篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   7篇
  1991年   9篇
  1989年   4篇
  1988年   2篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有234条查询结果,搜索用时 281 毫秒
121.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   
122.
This paper considers the scheduling problem to minimize total tardiness given multiple machines, ready times, sequence dependent setups, machine downtime and scarce tools. We develop a genetic algorithm based on random keys representation, elitist reproduction, Bernoulli crossover and immigration type mutation. Convergence of the algorithm is proved. We present computational results on data sets from the auto industry. To demonstrate robustness of the approach, problems from the literature of different structure are solved by essentially the same algorithm. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 199–211, 1999  相似文献   
123.
Least squares fitting of regression models is a widely used technique. The presence of outliers in the data can have an adverse effect on the method of least squares, resulting in a model that does not adequately fit to the bulk of the data. For this situation, robust regression techniques have been proposed as an improvement to the method of least squares. We propose a robust regression procedure that performs well relative to the current robust methods against a variety of dataset types. Evaluations are performed using datasets without outliers (testing efficiency), with a large percentage of outliers (testing breakdown), and with high leverage outliers (testing bounded influence). The datasets are based on 2-level factorial designs that include axial points to evaluate leverage effects. A Monte Carlo simulation approach is used to evaluate the estimating capability of the proposed procedure relative to several competing methods. We also provide an application to estimating costs for government satellites. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 125–139, 1998  相似文献   
124.
A retailer or distributor of finished goods, or the manager of a spare-parts inventory system, must generally forecast the major portion of demand. A specific customer-service level p (fraction of replenishment intervals with no stockout) implies two challenges: achieve the service within a small interval plus or minus, and do so with a minimum-cost investment in inventory. The pth fractile of lead-time demand (LTD) is the reorder point (ROP) for this service measure, and is often approximated by that fractile of a normal distribution. With this procedure, it is easy to set safety stocks for an (s, Q) inventory system. However, Bookbinder and Lordahl [2] and others have identified cases where the normal approximation yields excessive costs and/or lower service than desired. This article employs an order-statistic approach. Using available LTD data, the ROP is simply estimated from one or two of the larger values in the sample. This approach is sufficiently automatic and intuitive for routine implementation in industry, yet is distribution free. The order-statistic method requires only a small amount of LTD data, and makes no assumptions on the form of the underlying LTD distribution, nor even its parameters μ and ρ. We compare the order-statistic approach and the normal approximation, first in terms of customer service and then using a model of expected annual cost. Based upon characteristics of the available LTD data, we suggest a procedure to aid a practitioner in choosine between the normal and order-statistic method. © 1994 John Wiley & Sons, Inc.  相似文献   
125.
This article considers the problem of scheduling parallel processors to minimize the makespan. The article makes two key contributions: (1) It develops a new lower bound on the makespan for an optimal schedule, and (2) it proposes an efficient two-step algorithm to find schedules of any desired accuracy, or percent above optimal. In addition, a posterior bound on LPT (longest processing time) sequencing is developed in the article. It is proved that this bound dominates the previously reported bounds on LPT sequencing.  相似文献   
126.
127.
128.
129.
130.
A system of iid Bernoulli components is the starting point in the statistical theory of reliability. This simplification allows for the development of a rich, though elementary, theory for the structure of the system. Two representations play a prominent role in the study of structural reliability. One is the minimal path set representation and the other is the signature representation. By combining the two representations with the Gibbs measure for the state of components, one obtains terms that can be interpreted as the complexity of the system structure. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号