首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   55篇
  2021年   7篇
  2020年   3篇
  2019年   14篇
  2018年   5篇
  2017年   11篇
  2016年   19篇
  2015年   21篇
  2014年   13篇
  2013年   97篇
  2012年   10篇
  2011年   11篇
  2010年   6篇
  2009年   14篇
  2008年   13篇
  2007年   15篇
  2006年   10篇
  2005年   15篇
  2004年   12篇
  2003年   16篇
  2002年   12篇
  2001年   11篇
  2000年   8篇
  1999年   13篇
  1998年   4篇
  1997年   7篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1986年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1971年   5篇
  1969年   3篇
  1968年   3篇
  1967年   1篇
  1966年   2篇
  1948年   1篇
排序方式: 共有454条查询结果,搜索用时 625 毫秒
31.
32.
In this article, the Building Evacuation Problem with Shared Information (BEPSI) is formulated as a mixed integer linear program, where the objective is to determine the set of routes along which to send evacuees (supply) from multiple locations throughout a building (sources) to the exits (sinks) such that the total time until all evacuees reach the exits is minimized. The formulation explicitly incorporates the constraints of shared information in providing online instructions to evacuees, ensuring that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. Arc travel time and capacity, as well as supply at the nodes, are permitted to vary with time and capacity is assumed to be recaptured over time. The BEPSI is shown to be NP‐hard. An exact technique based on Benders decomposition is proposed for its solution. Computational results from numerical experiments on a real‐world network representing a four‐story building are given. Results of experiments employing Benders cuts generated in solving a given problem instance as initial cuts in addressing an updated problem instance are also provided. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
33.
34.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
35.
For computing an optimal (Q, R) or kindred inventory policy, the current literature provides mixed signals on whether or when it is safe to approximate a nonnormal lead‐time‐demand (“LTD”) distribution by a normal distribution. The first part of this paper examines this literature critically to justify why the issue warrants further investigations, while the second part presents reliable evidence showing that the system‐cost penalty for using the normal approximation can be quite serious even when the LTD‐distribution's coefficient of variation is quite low—contrary to the prevalent view of the literature. We also identify situations that will most likely lead to large system‐cost penalty. Our results indicate that, given today's technology, it is worthwhile to estimate an LTD‐distribution's shape more accurately and to compute optimal inventory policies using statistical distributions that more accurately reflect the LTD‐distributions' actual shapes. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
36.
This paper presents a model for choosing a minimum-cost mix of strategic defenses to assure that specified production capacities for several economic sectors survive after a nuclear attack. The defender selects a mix of strategic defenses for each of several geographic regions. The attacker chooses an allocation of attacking weapons to geographic regions, within specified weapon inventories. The attack is optimized against any economic sector. This formulation allows the defense planner the capability to assess the results of the optimal defense structure for a “worst case” attack. The model is a mathematical program with nonlinear programming problems in the constraints; an example of its application is given and is solved using recently developed optimization techniques.  相似文献   
37.
Least squares estimators of the parameters of the generalized Eyring Model are obtained by using data from censored life tests conducted at several accelerated environments. These estimators are obtained after establishing that the Gauss-Markov conditions for least squares estimation are satisfied. Confidence intervals for the hazard rate at use conditions are obtained after empirically showing that the logarithm of the estimate of the hazard rate at use conditions is approximately normally distributed. The coverage probabilities of the confidence intervals are also verified by a Monte Carlo experiment. The techniques are illustrated by an application to some real data.  相似文献   
38.
Fractional fixed-charge problems arise in numerous applications, where the measure of economic performance is the time rate of earnings or profit (equivalent to an interest rate on capital investment). This paper treats the fractional objective function, after suitable transformation, as a linear parametric fixed-charge problem. It is proved, with wider generality than in the case of Hirsch and Dantzig, that some optimal solution to the generalized linear fixed-charge problem is an extreme point of the polyhedral set defined by the constraints. Furthermore, it is shown that the optimum of the generalized fractional fixed-charge problem is also a vertex of this set. The proof utilizes a suitable penalty function yielding an upper bound on the optimal value of the objective function; this is particularly useful when considering combinations of independent transportation-type networks. Finally, it is shown that the solution of a fractional fixed-charge problem is obtainable through that of a certain linear fixed-charge one.  相似文献   
39.
In this paper, we extend the inventory lot‐size models to allow for inflation and fluctuating demand (which is more general than constant, increasing, decreasing, and log‐concave demand patterns). We prove that the optimal replenishment schedule not only exists but is also unique. Furthermore, we show that the total cost associated with the inventory system is a convex function of the number of replenishments. Hence, the search for the optimal number of replenishments is simplified to finding a local minimum. Finally, several numerical examples are provided to illustrate the results. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 144–158, 2001  相似文献   
40.
This paper studies a queueing system with a Markov arrival process with marked arrivals and PH‐distribution service times for each type of customer. Customers (regardless of their types) are served on a mixed first‐come‐first‐served (FCFS) and last‐come‐first‐served (LCFS) nonpreemptive basis. That is, when the queue length is N (a positive integer) or less, customers are served on an FCFS basis; otherwise, customers are served on an LCFS basis. The focus is on the stationary distribution of queue strings, busy periods, and waiting times of individual types of customers. A computational approach is developed for computing the stationary distribution of queue strings, the mean of busy period, and the means and variances of waiting times. The relationship between these performance measures and the threshold number N is analyzed in depth numerically. It is found that the variance of the virtual (actual) waiting time of an arbitrary customer can be reduced by increasing N. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 399–421, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号