首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2003年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1982年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The paper extends the machine flow-shop scheduling problem by separating processing time into setup, processing and removal times.  相似文献   
2.
This paper studies a queueing system with a Markov arrival process with marked arrivals and PH‐distribution service times for each type of customer. Customers (regardless of their types) are served on a mixed first‐come‐first‐served (FCFS) and last‐come‐first‐served (LCFS) nonpreemptive basis. That is, when the queue length is N (a positive integer) or less, customers are served on an FCFS basis; otherwise, customers are served on an LCFS basis. The focus is on the stationary distribution of queue strings, busy periods, and waiting times of individual types of customers. A computational approach is developed for computing the stationary distribution of queue strings, the mean of busy period, and the means and variances of waiting times. The relationship between these performance measures and the threshold number N is analyzed in depth numerically. It is found that the variance of the virtual (actual) waiting time of an arbitrary customer can be reduced by increasing N. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 399–421, 2000  相似文献   
3.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   
4.
A queueing system characterized by the discrete batch Markovian arrival process (D-BMAP) and a probability of phase type distribution for the service time is one that arises frequently in the area of telecommunications. Under this arrival process and service time distribution we derive the waiting time distribution for three queue disciplines: first in first out (FIFO), last in first out (LIFO), and service in random order (SIRO). We also outline efficient algorithmic procedures for computing the waiting time distributions under each discipline. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 559–576, 1997  相似文献   
5.
We use the matrix-geometric method to study the discrete time MAP/PH/1 priority queue with two types of jobs. Both preemptive and non-preemptive cases are considered. We show that the structure of the R matrix obtained by Miller for the Birth-Death system can be extended to our Quasi-Birth-Death case. For both preemptive and non-preemptive cases the distributions of the number of jobs of each type in the system are obtained and their waiting times are obtained for the non-preemptive. For the preemptive case we obtain the waiting time distribution for the high priority job and the distribution of the lower priority job's wait before it becomes the leading job of its priority class. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 23–50, 1998  相似文献   
6.
We use the matrix‐geometric method to study the MAP/PH/1 general preemptive priority queue with a multiple class of jobs. A procedure for obtaining the block matrices representing the transition matrix P is presented. We show that the special upper triangular structure of the matrix R obtained by Miller [Computation of steady‐state probabilities for M/M/1 priority queues, Oper Res 29(5) (1981), 945–958] can be extended to an upper triangular block structure. Moreover, the subblock matrices of matrix R also have such a structure. With this special structure, we develop a procedure to compute the matrix R. After obtaining the stationary distribution of the system, we study two primary performance indices, namely, the distributions of the number of jobs of each type in the system and their waiting times. Although most of our analysis is carried out for the case of K = 3, the developed approach is general enough to study the other cases (K ≥ 4). © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 662–682, 2003.  相似文献   
7.
This paper examines the process by which a user of a queueing system selects his arrival time to the system to compensate for unpredictable delays in the system if he wishes to complete service at a particular time. Considering the case in which all the system users have already decided on their arrival times to the system and will not change these times, this paper investigates how a new user of this system develops his strategy for selecting his arrival time. The distribution of this customer's arrival time is then obtained for a special case.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号