首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   5篇
  2021年   4篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   44篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1998年   5篇
  1997年   4篇
  1996年   9篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   5篇
  1986年   7篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   10篇
  1979年   4篇
  1978年   6篇
  1977年   4篇
  1976年   5篇
  1975年   6篇
  1974年   4篇
  1973年   2篇
  1972年   3篇
  1971年   8篇
  1970年   4篇
  1969年   4篇
  1968年   5篇
  1967年   4篇
  1966年   6篇
排序方式: 共有275条查询结果,搜索用时 140 毫秒
121.
In this paper, the mathematical model for the allocation of resources among a general mix of percentage vulnerable and of numerically vulnerable weapon systems is presented and solved. Percentage vulnerable systems consist of mobile weapons which are difficult to locate, but relatively easy to destroy once located; numerically vulnerable systems comprise easily located fixed base weapons which are difficult to destroy. The distinguishing feature of this analysis is the inclusion of development costs. The theory of max-min is extended as necessary to solve this problem. References are provided to a sequence of earlier versions of this problem.  相似文献   
122.
A population of items which break down at random times and require repair is studied (the classic “machine repair problem with spares”). It is desired to determine the number of repair channels and spares required over a multiyear planning horizon in which population size and component reliability varies, and a service level constraint is imposed. When an item fails, a spare (if available) is immediately dispatched to replace the failed item. The failed item is removed, transported to the repair depot, repaired, and then placed in the spares pool (which is constrained to be empty not more than 10% of the time) unless there is a backlog of requests for spares, in which case it is dispatched immediately. The first model considered treats removal, transportation, and repair as one service operation. The second model is a series queue which allows for the separate treatment of removal, transportation, and repair. Breakdowns are assumed Poisson and repair times exponential.  相似文献   
123.
The most vital link in a single commodity flow network is that are whose removal results in the greatest reduction in the value of the maximal flow in the network between a source node and a sink node. This paper develops an iterative labeling algorithm to determine the most vital link in the network. A necessary condition for an are to be the most vital link is established and is employed to decrease the number of ares which must be considered.  相似文献   
124.
125.
126.
127.
128.
The Brain of an Army: a Popular Account of the German General Staff. By Spenser Wilkinson. Archibald Constable, London (1st edition 1890, 2nd edition 1895)  相似文献   
129.
This paper concerns itself with the problem of estimating the parameters of one-way and two-way classification models by minimization of the sum of the absolute deviations of the regression function from the observed points. The one-way model reduces to obtaining a set of medians from which optimal parameters can be obtained by simple arithmetic manipulations. The two-way model is transformed into a specially structured linear programming problem, and two algorithms are presented to solve this problem. The occurrence of alternative optimal solutions in both models is discussed, and numerical examples are presented.  相似文献   
130.
This paper considers the search for an evader concealed in one of two regions, each of which is characterized by its detection probability. The single-sided problem, in which the searcher is told the probability of the evader being located in a particular region, has been examined previously. We shall be concerned with the double-sided problem in which the evader chooses this probability secretly, although he may not subsequently move: his optimal strategy consists of that probability distribution which maximizes the expected time to detection, while the searcher's optimal strategy is the sequence of searches which limits the evader to this expected time. It transpires for this problem that optimal strategies for both searcher and evader may generally be obtained to a surprisingly good degree of approximation by using the optimal strategies for the closely related (but far more easily solved) problem in which the evader is completely free to move between searches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号