首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider a single-machine problem of scheduling n independent jobs to minimize makespan, in which the processing time of job Jj grows by wj with each time unit its start is delayed beyond a given common critical date d. This processing time is pj if Jj starts by d. We show that this problem is NP-hard, give a pseudopolynomial algorithm that runs in time and O(nd) space, and develop a branch-and-bound algorithm that solves instances with up to 100 jobs in a reasonable amount of time. We also introduce the case of bounded deterioration, where the processing time of a job grows no further if the job starts after a common maximum deterioration date D > d. For this case, we give two pseudopolynomial time algorithms: one runs in O(n2d(D − d) time and O(nd(D − d)) space, the other runs in pj)2) time and pj) space. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 511–523, 1998  相似文献   

2.
This paper examines problems of sequencing n jobs for processing by a single resource to minimize a function of job completion times, when the availability of the resource varies over time. A number of well-known results for single-machine problems which can be applied with little or no modification to the corresponding variable-resource problems are given. However, it is shown that the problem of minimizing the weighted sum of completion times provides an exception.  相似文献   

3.
In this paper, we consider the problem of minimizing the mean flow time of jobs to be processed on two machines. The jobs have a predetermined order, perhaps reflecting the order of arrival, and each job has a known processing time. We wish to assign the jobs to machines so as to minimize the mean flow time, with the constraint that the original order must be preserved within the subset of jobs assigned to each machine. An efficient algorithm based on dynamic programming is developed.  相似文献   

4.
Suppose a given set of jobs has to be processed on a multi-purpose facility which has various settings or states. There is a choice of states in which to process a job and the cost of processing depends on the state. In addition, there is also a sequence-dependent changeover cost between states. The problem is then to schedule the jobs, and pick an optimum setting for each job, so as to minimize the overall operating costs. A dynamic programming model is developed for obtaining an optimal solution to the problem. The model is then extended using the method of successive approximations with a view to handling large-dimensioned problems. This extension yields good (but not necessarily optimal) solutions at a significant computational saving over the direct dynamic programming approach.  相似文献   

5.
There are n customers that need to be served. Customer i will only wait in queue for an exponentially distributed time with rate λi before departing the system. The service time of customer i has distribution Fi, and on completion of service of customer i a positive reward ri is earned. There is a single server and the problem is to choose, after each service completion, which currently in queue customer to serve next so as to maximize the expected total return. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 659–663, 2015  相似文献   

6.
Most machine scheduling models assume that the machines are available all of the time. However, in most realistic situations, machines need to be maintained and hence may become unavailable during certain periods. In this paper, we study the problem of processing a set of n jobs on m parallel machines where each machine must be maintained once during the planning horizon. Our objective is to schedule jobs and maintenance activities so that the total weighted completion time of jobs is minimized. Two cases are studied in this paper. In the first case, there are sufficient resources so that different machines can be maintained simultaneously if necessary. In the second case, only one machine can be maintained at any given time. In this paper, we first show that, even when all jobs have the same weight, both cases of the problem are NP-hard. We then propose branch and bound algorithms based on the column generation approach for solving both cases of the problem. Our algorithms are capable of optimally solving medium sized problems within a reasonable computational time. We note that the general problem where at most j machines, 1 ≤ jm, can be maintained simultaneously, can be solved similarly by the column generation approach proposed in this paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 145–165, 2000  相似文献   

7.
A recent article in this journal by Mehta, Chandrasekaran, and Emmons [1] described a dynamic programming algorithm for assigning jobs to two identical parallel processors in a way that minimizes the average delay of these jobs. Their problem has a constraint on the sequence of the jobs such that any group of jobs assigned to a processor must be processed in the order of the sequence. This note has two purposes. First, we wish to point out a relationship between this work and some prior work [2]. Second, we wish to point out that Mehta, Chandrasekaran, and Emmons formulation, slightly generalized, can be used to find the optimum assignment of jobs to two machines in a more general class of problems than they considered including a subclass in which the jobs are not constrained to be processed in a given sequence.  相似文献   

8.
We study the problems of scheduling a set of nonpreemptive jobs on a single or multiple machines without idle times where the processing time of a job is a piecewise linear nonincreasing function of its start time. The objectives are the minimization of makespan and minimization of total job completion time. The single machine problems are proved to be NP‐hard, and some properties of their optimal solutions are established. A pseudopolynomial time algorithm is constructed for makespan minimization. Several heuristics are derived for both total completion time and makespan minimization. Computational experiments are conducted to evaluate their efficiency. NP‐hardness proofs and polynomial time algorithms are presented for some special cases of the parallel machine problems. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 531–554, 2003  相似文献   

9.
Currently, both the hardware and software designs of many large computing systems aim at improved system performance through exploitation of parallelism in multiprocessor systems. In studying these systems, mathematical modelling and analysis constitute an important step towards providing design tools that can be used in building such systems. With this view the present paper describes a queueing model of a multiprocessor system operating in a job-shop environment in which arriving jobs consist of a random number of segments (sub-jobs). Two service disciplines are considered: one assumes that the sub-jobs of a given job are capable of parallel operation on different processors while the other assumes that the same sub-jobs must be operated in a strictly serial sequ'snce. The results (in particular, the mean number in the system and waiting time in queue) obtained for these two disciplines are shown to be bounds for more general job structures.  相似文献   

10.
Arriving (generic) jobs may be processed at one of several service stations, but only when no other (dedicated) jobs are waiting there. We consider the problem of how to route these incoming background jobs to make best use of the spare service capacity available at the stations. We develop an approximative approach to Whittle's proposal for restless bandits to obtain an index policy for routing. The indices concerned are increasing and nonlinear in the station workload. A numerical study testifies to the strong performance of the index policies developed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

11.
We consider a stochastic counterpart of the well-known earliness-tardiness scheduling problem with a common due date, in which n stochastic jobs are to be processed on a single machine. The processing times of the jobs are independent and normally distributed random variables with known means and known variances that are proportional to the means. The due dates of the jobs are random variables following a common probability distribution. The objective is to minimize the expectation of a weighted combination of the earliness penalty, the tardiness penalty, and the flow-time penalty. One of our main results is that an optimal sequence for the problem must be V-shaped with respect to the mean processing times. Other characterizations of the optimal solution are also established. Two algorithms are proposed, which can generate optimal or near-optimal solutions in pseudopolynomial time. The proposed algorithms are also extended to problems where processing times do not satisfy the assumption in the model above, and are evaluated when processing times follow different probability distributions, including general normal (without the proportional relation between variances and means), uniform, Laplace, and exponential. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44, 531–557, 1997.  相似文献   

12.
The majority of scheduling literature assumes that the machines are available at all times. In this paper, we study single machine scheduling problems where the machine maintenance must be performed within certain intervals and hence the machine is not available during the maintenance periods. We also assume that if a job is not processed to completion before the machine is stopped for maintenance, an additional setup is necessary when the processing is resumed. Our purpose is to schedule the maintenance and jobs to minimize some performance measures. The objective functions that we consider are minimizing the total weighted job completion times and minimizing the maximum lateness. In both cases, maintenance must be performed within a fixed period T, and the time for the maintenance is a decision variable. In this paper, we study two scenarios concerning the planning horizon. First, we show that, when the planning horizon is long in relation to T, the problem with either objective function is NP-complete, and we present pseudopolynomial time dynamic programming algorithms for both objective functions. In the second scenario, the planning horizon is short in relation to T. However, part of the period T may have elapsed before we schedule any jobs in this planning horizon, and the remaining time before the maintenance is shorter than the current planning horizon. Hence we must schedule one maintenance in this planning horizon. We show that the problem of minimizing the total weighted completion times in this scenario is NP-complete, while the shortest processing time (SPT) rule and the earliest due date (EDD) rule are optimal for the total completion time problem and the maximum lateness problem respectively. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 845–863, 1999  相似文献   

13.
为了降低混部云失败批处理作业的风险,使用K-means聚类算法将批处理作业分为四类,在分类的基础上提出了二层嵌套分类模型(two-layer nested classification model, TLNM),实现了基于TLNM的预测算法。基于Ali Trace 2018数据集上的实验结果表明,该算法的接受者操作特性(receiver operating characteristic, ROC)曲线明显优于其他常用分类器,ROC曲线下面积(即AUC)可以达到0.978,表明该算法具有良好的分类性能。同时召回率可以达到0.951,通过混淆矩阵可以看出TLNM算法能够准确预测出执行失败的批处理作业。  相似文献   

14.
We consider the two‐machine open shop scheduling problem in which the jobs are brought to the system by a single transporter and moved between the processing machines by the same transporter. The purpose is to split the jobs into batches and to find the sequence of moves of the transporter so that the time by which the completed jobs are collected together on board the transporter is minimal. We present a ‐approximation algorithm. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

15.
We develop polynomial algorithms for several cases of the NP-hard open shop scheduling problem of minimizing the number of late jobs by utilizing some recent results for the open shop makespan problem. For the two machine common due date problem, we assume that either the machines or the jobs are ordered. For the m machine common due date problem, we assume that one machine is maximal and impose a restriction on its load. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 525–532, 1998  相似文献   

16.
A single machine is available to process a collection of stochastic jobs. There may be technological constraints on the job set. The machine sometimes breaks down. Costs are incurred and rewards are earned during processing. We seek strategies for processing the jobs which maximize the total expected reward earned.  相似文献   

17.
The problem considered is to assign n jobs to two processors so as to minimize the total flow time, with the constraint that a predetermined partial ordering (induced by batch arrivals) must be preserved within the subset of jobs assigned to each processor. An efficient algorithm of time 0(n5) is developed, and computational experience is reported.  相似文献   

18.
In many practical manufacturing environments, jobs to be processed can be divided into different families such that a setup is required whenever there is a switch from processing a job of one family to another job of a different family. The time for setup could be sequence independent or sequence dependent. We consider two particular scheduling problems relevant to such situations. In both problems, we are given a set of jobs to be processed on a set of identical parallel machines. The objective of the first problem is to minimize total weighted completion time of jobs, and that of the second problem is to minimize weighted number of tardy jobs. We propose column generation based branch and bound exact solution algorithms for the problems. Computational experiments show that the algorithms are capable of solving both problems of medium size to optimality within reasonable computational time. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 823–840, 2003.  相似文献   

19.
In due‐window assignment problems, jobs completed within a designated time interval are regarded as being on time, whereas early and tardy jobs are penalized. The objective is to determine the location and size of the due‐window, as well as the job schedule. We address a common due‐window assignment problem on parallel identical machines with unit processing time jobs. We show that the number of candidate values for the optimal due‐window starting time and for the optimal due‐window completion time are bounded by 2. We also prove that the starting time of the first job on each of the machines is either 0 or 1, thus introducing a fairly simple, constant‐time solution for the problem. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

20.
Given n jobs and a single facility, and the fact that a subset of jobs are “related” to each other in such a manner that regardless of which job is completed first, its utility is hampered until all other jobs in the same subset are also completed, it is desired to determine the sequence which minimizes the cost of tardiness. The special case of pairwise relationship among all jobs is easily solved. An algorithm for the general case is given through a dynamic programming formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号