首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   51篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   4篇
  1971年   1篇
  1970年   3篇
  1969年   2篇
  1967年   3篇
  1966年   3篇
排序方式: 共有144条查询结果,搜索用时 437 毫秒
101.
This paper represents a continuation of three previous papers [1-.3] in the study of competitive bidding processes. It treats the case where a bidder's knowledge of his competitor's cost i s given by a probability distribution over a certain interval. The results obtained extend the work of Vickrey [4] to the case where the cost intervals a r e not necessarily symmetric.  相似文献   
102.
This paper presents a statistical decision analysis of a one-stage linear programming problem with deterministic constraints and stochastic criterion function. Procedures for obtaining numerical results are given which are applicable to any problem having this general form. We begin by stating the statistical decision problems to be considered, and then discuss the expected value of perfect information and the expected value of sample information. In obtaining these quantities, use is made of the distribution of the optimal value of the linear programming problem with stochastic criterion function, and so we discuss Monte Carlo and numerical integration procedures for estimating the mean of this distribution. The case in which the random criterion vector has a multivariate Normal distribution is discussed separately, and more detailed methods are offered. We discuss dual problems, including some relationships of this work with other work in probabilistic linear programming. An example is given in Appendix A showing application of the methods to a sample problem. In Appendix B we consider the accuracy of a procedure for approximating the expected value of information.  相似文献   
103.
Certain types of communication nodes can be viewed as multichannel queueing systems with two types of arrival streams. Data arrivals are characterized by high arrival and service rates and have the ability to queue if all service channels are busy. Voice arrivals have small arrival and service rates and do not have the ability to wait when the channels are full. Computational procedures are presented for obtaining the invariant probabilities associated with the queueing model.  相似文献   
104.
Total time on test (TTT) plots provide a useful graphical method for tentative identification of failure distribution models. Identification is based on properties of the TTT transform. New properties of the TTT transform distribution are obtained. These results are useful to the user of TTT plots. Although IFR (DFR) distributions are particularly easy to identify from TTT plots, the user must exercise caution relative to identification of IFR A (DFRA) distributions.  相似文献   
105.
Large complicated projects with interdependent activities can be described by project networks. Arcs represent activities, nodes represent events, and the network's structure defines the relation between activities and events. A schedule associates an occurrence time with each event: the project can be scheduled in several different ways. We assume that a known amount of cash changes hands at each event. Given any schedule the present value of all cash transactions can be calculated. The payment scheduling problem looks for a schedule that maximizes the present value of all transactions. This problem was first introduced by Russell [2]; it is a nonlinear program with linear constraints and a nonconcave objective. This paper demonstrates that the payment scheduling problem can be transformed into an equivalent linear program. The linear program has the structure of a weighted distribution problem and an efficient procedure is presented for its solution. The algorithm requires the solution of triangular systems of equations with all matrix coefficients equal to ± or 0.  相似文献   
106.
107.
This paper presents an efficient algorithm for scheduling a single-category work force on 4-day or 3-day work weeks. Employees work 4 or 3 days each week, have A out of every B weekends off, and work no more than 5 consecutive days in a work stretch on 4-day work weeks and no more than 4 days in a work stretch on 3-day work weeks. Such conditions often prevail in 7-day-a-week organizations such as hospitals, manufacturing plants, and retail stores. We determine the minimum number of workers required to satisfy the scheduling constraints under any pattern of daily requirements. Then we present the algorithm for assigning days off for each worker, thereby determining the work schedules. We show that the algorithm, by construction, will necessarily satisfy the scheduling constraints. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 839–853, 1998  相似文献   
108.
Because Pakistan has varying climates and terrains, the Pakistan Army rotates its units between peacetime locations so that no unit endures inequitable hardship or enjoys unfair advantage. Army policy specifies strict constraints on unit rotations, such as the length of a unit's stay in any location, the number of units moving at any time, and the allowable replacements for any moving unit. Scheduling rotations manually in accordance with these rules, as is currently practiced, is extremely difficult and time consuming. This article presents an integer programming model that finds feasible, minimum-cost schedules for the Pakistan Army's desired planning horizons. The model also ensures that the units are positioned at the end of the planning horizon so that feasible schedules exist for future planners. The model is implemented with commercially available optimization software. Schedules are obtained for realistic test problems in less than an hour on a personal computer. © 1995 John Wiley & Sons, Inc.  相似文献   
109.
An area to be defended consists of separated point targets. These targets are subject to an attack in which the offensive weapons are assumed to arrive simultaneously. The defense has area defenders, each of which is capable of intercepting any attacker'. Furthermore, the defense has impact-point prediction, i.e., it has knowledge of each attacker's intended target prior to allocation of the area interceptors. For a given attack, the defense wishes to allocate its interceptors against attackers so as to maximize the expected total survival value of the targets. In its first move, the offense seeks an attack allocation which will minimize expected total surviving value against best defense. We develop an algorithm to determine optimal attack and defense strategies and the optimal value of this sequential min-max problem. Branch-and-bound techniques are used to obtain integer solutions, and illustrative computational results are provided.  相似文献   
110.
An area to be defended consists of separated point targets. These targets are subject to an attack in which the offensive weapons are assumed to arrive simultaneously. The defense has area defenders, each of which is capable of intercepting any attacker. The defense has no impact-point prediction; that is, it has no knowledge of any attacker's destination prior to allocation of area interceptors. For a given attack, the defense wishes to allocate its interceptors to maximize the total expected survival value of the targets. For a given attack size, the offense seeks a strategy to minimize total expected surviving value against best defense. We determine an optimal defensive strategy directly and develop an algorithm to determine an optimal attack and the optimal value of the min-max problem. A dynamic programming technique is used to obtain integer solutions, and illustrative computational results are provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号