首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   10篇
  2021年   5篇
  2019年   15篇
  2018年   13篇
  2017年   14篇
  2016年   13篇
  2015年   11篇
  2014年   4篇
  2013年   102篇
  2012年   6篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2007年   8篇
  2006年   9篇
  2005年   12篇
  2004年   11篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   9篇
  1999年   8篇
  1998年   6篇
  1997年   9篇
  1996年   14篇
  1995年   7篇
  1994年   10篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1986年   10篇
  1985年   12篇
  1984年   9篇
  1983年   7篇
  1982年   6篇
  1981年   8篇
  1980年   10篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   9篇
  1975年   6篇
  1974年   11篇
  1973年   8篇
  1972年   10篇
  1971年   13篇
  1970年   3篇
  1969年   6篇
  1968年   6篇
  1967年   3篇
排序方式: 共有518条查询结果,搜索用时 125 毫秒
51.
This paper does not present a new result, rather it is meant to illustrate the choice of modelling procedures available to an analyst in a typical inventory control problem. The same “average cost per unit time” expression is developed by three quite different procedures. This variety of approaches, as well as the recounting of the author's chronological efforts to solve the problem, should be of interest to the reader. The specific inventory problem studied is one where the controller of an item is faced with random opportunities for replenishment at a reduced setup cost; the problem is an integral component of the broader problem of inventory control of a group of items whose replenishments are coordinated to reduce the costs of production, procurement, and/or transportation.  相似文献   
52.
A complete analysis and explicit solution is presented for the problem of linear fractional programming with interval programming constraints whose matrix is of full row rank. The analysis proceeds by simple transformation to canonical form, exploitation of the Farkas-Minkowki lemma and the duality relationships which emerge from the Charnes-Cooper linear programming equivalent for general linear fractional programming. The formulations as well as the proofs and the transformations provided by our general linear fractional programming theory are here employed to provide a substantial simplification for this class of cases. The augmentation developing the explicit solution is presented, for clarity, in an algorithmic format.  相似文献   
53.
Suppose that a contractor is faced with a sequence of “minimum bid wins contract” competitions. Assuming that a contractor knows his cost to fulfill the contract at each competition and that competitors are merely informed whether or not they have won, bids may be selected sequentially via a tailored stochastic approximation procedure. The efficacy of this approach in certain bidding environments is investigated.  相似文献   
54.
A result of Smith previously published in this journal [3], on the use of secondary criterion in scheduling problems is extended, and an example presented.  相似文献   
55.
Models are formulated for determining continuous review (Q, r) policies for a multiitem inventory subject to constraints. The objective function is the minimization of total time-weighted shortages. The constraints apply to inventory investment and reorder workload. The formulations are thus independent of the normal ordering, holding, and shortage costs. Two models are presented, each representing a convex programming problem. Lagrangian techniques are employed with the first, simplified model in which only the reorder points are optimized. In the second model both the reorder points and the reorder quantities are optimized utilizing penalty function methods. An example problem is solved for each model. The final section deals with the implementation of these models in very large inventory systems.  相似文献   
56.
57.
58.
Allocation of scarce common components to finished product orders is central to the performance of assembly systems. Analysis of these systems is complex, however, when the product master schedule is subject to uncertainty. In this paper, we analyze the cost—service performance of a component inventory system with correlated finished product demands, where component allocation is based on a fair shares method. Such issuing policies are used commonly in practice. We quantify the impact of component stocking policies on finished product delays due to component shortages and on product order completion rates. These results are used to determine optimal base stock levels for components, subject to constraints on finished product service (order completion rates). Our methodology can help managers of assembly systems to (1) understand the impact of their inventory management decisions on customer service, (2) achieve cost reductions by optimizing their inventory investments, and (3) evaluate supplier performance and negotiate contracts by quantifying the effect of delivery lead times on costs and customer service. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:409–429, 2001  相似文献   
59.
This paper develops and applies a nonparametric bootstrap methodology for setting inventory reorder points and a simple inequality for identifying existing reorder points that are unreasonably high. We demonstrate that an empirically based bootstrap method is both feasible and calculable for large inventories by applying it to the 1st Marine Expeditionary Force General Account, an inventory consisting of $20–30 million of stock for 10–20,000 different types of items. Further, we show that the bootstrap methodology works significantly better than the existing methodology based on mean days of supply. In fact, we demonstrate performance equivalent to the existing system with a reduced inventory at one‐half to one‐third the cost; conversely, we demonstrate significant improvement in fill rates and other inventory performance measures for an inventory of the same cost. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 459–478, 2000  相似文献   
60.
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is N P‐hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst‐case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two‐machine flow shop and the open shop problems with a single server are also shown to be N P‐hard in the strong sense. However, we reduce the two‐machine flow shop no‐wait problem with a single server to the Gilmore—Gomory traveling salesman problem and solve it in polynomial time. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 304–328, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号