首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   34篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   8篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有126条查询结果,搜索用时 171 毫秒
31.
根据弹性薄板微分方程的一般解和边界条件的配点法来求四边搁支板的弯曲问题,并以对称荷载作用下的正方形板为例进行了分析计算。  相似文献   
32.
《防务技术》2014,10(1):47-59
Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW) and Flux cored arc welding (FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.  相似文献   
33.
本文研究了NICALON SiC束丝纤维增强铝预制丝在15~400℃温度区间内的热膨胀特性。研究表明预制丝两次热循环后得到的膨胀曲线不一致,该曲线在15~400℃范围的平均热膨胀系数分别为3.2×10~(-6)℃~(-1)、4.1×10~(-6)℃~(-1)。本文对预制丝的热膨胀行为进行了理论分析和探讨,计算值和实验值较为符合。  相似文献   
34.
弹体的攻角直接影响其侵彻能力,而横向运动板能使弹体发生偏转改变攻角,间接影响弹体的侵彻能力。在一定条件下,推导长杆弹在单层横向运动板作用下的偏转模型,并利用有限元仿真软件ANSYS/LS-rDYNA对长杆弹侵彻横向运动板的过程进行数值模拟。通过对偏转模型及仿真结果的分析,发现两者较为相符。研究结果显示:长杆弹侵彻横向运动板时,弹体会发生偏转,偏转的角速度先增后减,最后为0rad/s,此时偏转角最大;弹体速度方向也会发生偏转,其最终偏转角与弹体轴线的偏转角接近。  相似文献   
35.
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the param-eters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 μs throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 μs higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.  相似文献   
36.
基于应力梯度非局部薄板理论模型,推导了非局部薄板动力学特性求解的广义有限积分变换方法.通过选取适应边界条件的积分核函数并构建广义积分变换对,应用积分变换将非局部薄板的高阶偏微分方程变换成线性方程组,直接求解得到固有频率.将广义有限积分变换方法的计算结果和有限元法及已有文献的结果进行对比,验证了本文方法的正确性.在此基础...  相似文献   
37.
以部队某保障基地油库军用柴油扩容工程采用钢板贴壁工艺新建的1座15 000 m3地下水封油池为例,从技术经济学角度对钢板贴壁油罐作了静态投资分析。该钢板贴壁油罐静态总投资1 756.95万元,其中占总投资比例最高者为地下工程建设,达到53.76%,库容投资1 171.30元/m3。结果表明:钢板贴壁油罐较地下水封石洞油罐整体经济效益明显;投资定额可供编制预算参考。  相似文献   
38.
《防务技术》2019,15(3):353-362
AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.  相似文献   
39.
《防务技术》2019,15(3):450-456
The aim of this research study was to determine optimal resistance spot brazing parameters for joining between AHSS and AISI 304 stainless steel by using filler metal. The key parameters investigated in this study consist of the brazing current, electrode pressure and brazing time. The Taguchi method was applied to the design of experiments. Signal-to-Noise ratio was introduced in the study to identify optimal levels from the process where input parameters yield increased shear strength. Brazing was thus implemented with 5,000A brazing current, 0.70 MPa electrode pressure, and 1.50s brazing time. The maximum shear strength obtained was 54.31 N·mm−2 in accordance with input parameter settings. In addition, Cu-rich phase and Ag0.4Fe0.6 intermetallic phases were found at the interface zone.  相似文献   
40.
为了评价腔体开口因素对核电磁脉冲(High-amplitude Electro Magnetic Pulse,HEMP)和高功率微波(High Power Microwave,HPM)破坏效能的影响,采用CST电磁计算软件建立强电磁脉冲的孔缝耦合模型,研究孔缝的位置、大小以及长宽比对HEMP和HPM耦合效应的影响。结果表明,孔缝的位置、大小及长宽比对HEMP的耦合效应影响较大,合理控制孔缝的位置、大小以及长宽比能在一定程度上削弱HEMP的破坏效能。对于HPM,相同条件下其耦合效应要明显强于HEMP。在孔缝达到一定尺寸后,其大小和长宽比对HPM的耦合效应影响较小,仅孔缝位置会带来较大的影响。当开口平面与HPM入射方向平行时,耦合效应最弱,但此时耦合进入腔体内的能量还是很容易达到多种电子元器件的电磁损伤阈值级别。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号