首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   927篇
  免费   310篇
  国内免费   53篇
  2022年   14篇
  2021年   22篇
  2020年   18篇
  2019年   13篇
  2018年   10篇
  2017年   56篇
  2016年   54篇
  2015年   40篇
  2014年   61篇
  2013年   116篇
  2012年   122篇
  2011年   133篇
  2010年   46篇
  2009年   33篇
  2008年   41篇
  2007年   64篇
  2006年   67篇
  2005年   77篇
  2004年   63篇
  2003年   55篇
  2002年   25篇
  2001年   38篇
  2000年   38篇
  1999年   17篇
  1998年   6篇
  1997年   9篇
  1996年   10篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
排序方式: 共有1290条查询结果,搜索用时 23 毫秒
941.
一种统一的拓扑关系判断模型   总被引:1,自引:0,他引:1       下载免费PDF全文
拓扑关系是地理信息系统领域中一种非常重要的空间关系。当前已经提出了多种模型来对空间对象间的拓扑关系进行判断,但是这些模型都不能判断那些由点、线、多边形任意组合而成的异构几何集合对象间的拓扑关系。针对当前拓扑关系研究的不足,引入了混合几何的概念和正规化准则,基于此空间对象模型和维扩展9交集模型,提出了一个拓扑关系判断模型—集成型维扩展9交集模型(IDE 9IM),它不但能够判断单一的点、线、面以及同构几何集合对象间的拓扑关系,而且还能从复杂空间对象的总体和局部两个方面对异构几何集合对象间的拓扑关系进行判断,可以作为一个判断任意几何对象间拓扑关系的统一模型。  相似文献   
942.
模糊多因素多层次评判在目标威胁度中的应用   总被引:12,自引:3,他引:9  
目标威胁度评估是目标分配的重要依据,是区分目标的轻、重、缓、急为发射决策提供依据的保证。结合模糊优选理论和AHP法,以某新型地空导弹武器系统为依托,建立相应的威胁度评估模型,为火力单元级自动化作战指挥系统的目标威胁度评估提供了一种简捷有效的方法。  相似文献   
943.
The debris from exploded buildings can ricochet after colliding with the ground, thus increasing the debris travel distance and danger from any associated impacts or collisions. To reduce this danger, the travel distance of ricocheted debris must be accurately predicted. This study analyzed the change in the travel distance of ricocheted concrete debris relative to changes in the properties of a sand medium. Direct shear tests were conducted to measure the change in internal friction angle as a function of temperature and water content of the sand. Finite element analysis (FEA) was then applied to these variables to predict the speed and angle of the debris after ricochet. The FEA results were compared with results of low-speed ricochet experiments, which employed variable temperature and water content. The travel distance of the debris was calculated using MATLAB, via trajectory equations considering the drag coefficient. As the internal friction angle decreased, the shear stress decreased, leading to deeper penetration of the debris into the sand. As the loss of kinetic energy increased, the velocity and travel distance of the ricocheted debris decreased. Changes in the ricochet velocity and travel distance of the debris, according to changes in the internal friction angle, indicated that the debris was affected by the environment.  相似文献   
944.
Multi-pass TIG welding was conducted on plates (15×300×180 mm3) of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing industries. Porosity formation and solidification cracking are the most common defects when TIG welding Al-5083 alloy, which is sensitive to the welding heat input. In the experiment, the heat input was varied from 0.89 kJ/mm to 5 kJ/mm designed by the combination of welding torch travel speed and welding current. Tensile, micro-Vicker hardness and Charpy impact tests were executed to witness the impetus response of heat input on the mechanical properties of the joints. Radiographic inspection was performed to assess the joint's quality and welding defects. The results show that all the specimens displayed inferior mechanical properties as compared to the base alloy. It was established that porosity was progressively abridged by the increase of heat input. The results also clinched that the use of me-dium heat input (1-2 kJ/mm) offered the best mechanical properties by eradicating welding defects, in which only about 18.26% of strength was lost. The yield strength of all the welded specimens remained unaffected indicated no influence of heat input. Partially melted zone (PMZ) width also affected by heat input, which became widened with the increase of heat input. The grain size of PMZ was found to be coarser than the respective grain size in the fusion zone. Charpy impact testing revealed that the absorbed energy by low heat input specimen (welded at high speed) was greater than that of high heat input (welded at low speed) because of low porosity and the formation of equiaxed grains which induce better impact toughness. Cryogenic (-196 C) impact testing was also performed and the results corroborate that impact properties under the cryogenic environment revealed no appreciable change after welding at designated heat input. Finally, Macro and micro fractured surfaces of tensile and impact specimens were analyzed using Stereo and Scanning Electron Microscopy (SEM), which have supported the experimental findings.  相似文献   
945.
Hexagonal boron nitride nanosheets(HBNNSs)have huge potential in the field of coating materials owing to their remarkable chemical stability,mechanical strength and thermal conductivity.Thin-layer hBNNSs were obtained by a liquid-phase exfoliation of h-BN powders and incorporated into EVA coatings for improving the safety performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).HBNNSs and ethylene-vinyl acetate copolymer(EVA)were introduced to HMX by a solvent-slurry process.For com-parison,the HMX/EVA and HMX/EVA/graphene(HMX/EVA/G)composites were also prepared by a similar process.The morphology,crystal form,surface element distribution,thermal decomposition property and impact sensitivity of HMX/EVA/hBNNSs composites were contrastively investigated.Results showed that as prepared HMX/EVA/hBNNSs composites were well coated with hBNNSs and EVA,and exhibited better thermal stability and lower impact sensitivity than that of HMX/EVA and HMX/EVA/G composites,suggesting superior performance of desensitization of hBNNSs in explosives.  相似文献   
946.
The paper presents the possibilities of, and methods for, acquiring, analysing and processing optical signals in order to recognise, identify and counteract threats on the contemporary battleground. The main ways electronic warfare is waged in the optical band of the electromagnetic wave spectrum have been formulated, including the acquisition of optical emitter signatures, as well as ultraviolet (UV) and thermal (IR) signatures. The physical parameters and values describing the emission of laser radiation are discussed, including their importance in terms of creating optical signatures. Moreover, it has been shown that in the transformation of optical signals into signatures, only their spectral and temporal parameters can be applied. This was confirmed in experimental part of the paper, which includes our own measurements of spectral and temporal emission characteristics for three types of binocular laser rangefinders. It has been further shown that through simple registration and quick analysis involving comparison of emission time parameters in the case of UV signatures in “solar-blind” band, various events can be identified quickly and faultlessly. The same is true for IR signatures, where the amplitudes of the recorded signal for several wavelengths are compared. This was confirmed experimentally for UV signatures by registering and then analyzing signals from several events during military exercises at a training ground, namely Rocket Propelled Grenade (RPG) launches and explosions after hitting targets, trinitrotoluene (TNT) explosions, firing armour-piercing, fin-stabilised, discarding sabots (APFSDS) or high explosive (HE) projectiles. The final section describes a proposed model database of emitters, created as a result of analysing and transforming the recorded signals into optical signatures.  相似文献   
947.
Impact flash occurs when objects collide at supersonic speeds and can be used for real-time damage assessment when weapons rely on kinetic energy to destroy targets.However,the mechanism of impact flash remains unclear.A series of impact flash experiments of flat-head long-rod projectiles impacting thin target plates were performed with a two-stage light gas gun.The impact flash spectra for 6061 aluminum at 1.3-3.2 km/s collision speeds were recorded with a high-speed camera,a photoelectric sensor,and a time-resolved spectrometer.The intensity of the impact flash exhibited a pulse charac-teristic with time.The intensity(I)increased with impact velocity(V0)according to I∝Vn0,where n = 4.41 for V0 > 2 km/s.However,for V0 < 2 km/s,n = 2.21,and the intense flash duration is an order of magnitude less than that of higher V0.When V0 > 2 km/s,a continuous spectrum(thermal radiation background)was observed and increased in intensity with V0.However,for V0 < 2 km/s,only atomic line spectra were detected.There was no aluminum spectral lines for V0 < 2 km/s,which indicated that it had not been vaporized.The initial intense flash was emission from excited and ionized ambient gases near the impact surface,and had little relationship with shock temperature rise,indicating a new mechanism of impact flash.  相似文献   
948.
Bai-gang Mi 《防务技术》2021,17(3):987-1001
Accurately evaluating the aerodynamic performance of a battle-structure-damaged aircraft is essential to enable the pilot to optimize the flight control strategy. Based on CFD and rigid dynamic mesh techniques, a numerical method is developed to calculate the longitudinal and longitudinal-lateral coupling forces and moments with small amplitude sinusoidal pitch oscillation, and the corresponding dynamic de-rivatives of two fragment-structure-damaged and two continuous-rod-damaged models modified from the SACCON UAV. The results indicate that, at the reference point set in this paper, additional positive damping is generated in fragment-damaged configurations; thus, the absolute values of the negative pitch dynamic derivative increase. The missing wingtip induces negative pitch damping on the aircraft and decreases the value of the pitch dynamic derivative. The missing middle wing causes a noticeable increase in the absolute value of the pitch dynamic derivative;the missing parts on the right wing cause the aircraft to roll to the right side in the dynamic process, and the pitch-roll coupling cross dynamic derivatives are positive. Moreover, the values of these derivatives increase as the damaged area on the right wing increases, and an optimal case with the smallest cross dynamic derivative can be found to help improve the survivability of damaged aircraft.  相似文献   
949.
For the case that two pursuers intercept an evasive target, the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target, which performs a bang For the case that two pursuers intercept an evasive target, the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target, which performs a bang-bang evasive maneuver with a random switching time. Combined Fast multiple model adaptive estimation (Fast MMAE) algorithm, the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration. Introduced the detection error model related to the line-of-sight (LOS) separation angle of two interceptors, an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance. Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion, Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately. The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.  相似文献   
950.
对美陆基中段导弹防御系统识别链的组成及性能进行了系统论述,分析了各组成环节功能和原理,分析了陆基中段导弹防御识别链系统的薄弱环节.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号