排序方式: 共有43条查询结果,搜索用时 15 毫秒
21.
Min Zhu Sheng-ao Wang Huang Huang Gui Huang Fei Wu Shao-hua Sun Biao Li Zi-jian Xu 《防务技术》2021,17(4):1444-1452
The response characteristics of the warhead under thermal stimuli conditions are important to the safety improvement. The goal of this study is to obtain data on the warhead in the fast cook-off process. In this paper, a numerical calculation method is proposed, whose reliability is supported by comparison with experimental results. Through the numerical calculation, the temperature distribution, temperature change, and ignition time are acquired. The numerical results show that the ignition time is 76 s after the warhead started to burn and that the maximum temperature of the explosive's outer surface is 238.3 C at the ignition time. The fast cook-off experiment of the warhead is implemented so as to get the flame temperature and reaction grades that are not available through numerical calculation. The experimental results show that the overpressure fails to reach the preset minimum value which is equivalent to 6 kg of TNT and that the reaction grade is deflagration. The research results have reference value for the design of the warhead and the reduction of detonation risks. 相似文献
22.
《防务技术》2020,16(1):96-106
The numerical simulation of a blast wave of a multilayer composite charge is investigated. A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is established using the AUTODYN finite element program. Results of the near-field and far-field calculations of the shock wave respectively converge at cell sizes of 0.25–0.5 cm and 1–3 cm. The Euler––flux-corrected transport solver is found to be suitable for the far-field calculation after mapping. A numerical simulation is conducted to study the formation, propagation, and interaction of the shock wave of the composite charge for different initiation modes. It is found that the initiation mode obviously affects the shock-wave waveform and pressure distribution of the composite charge. Additionally, it is found that the area of the overpressure distribution is greatest for internal and external simultaneous initiation, and the peak pressure of the shock wave exponentially decays, fitting the calculation formula of the peak overpressure attenuation under different initiation modes, which is obtained and verified by experiment. The difference between numerical and experimental results is less than 10%, and the peak overpressure of both internal and external initiation is 56.12% higher than that of central single-point initiation. 相似文献
23.
The formation mechanism of an EFP(explosively formed projectile) using a double curvature liner under the overpressure effect generated by a regular oblique reflection was investigated in this paper.Based on the detonation wave propagation theory,the change of the incident angle of the detonation wave collision at different positions and the distribution area of the overpressure on the surface of the liner were calculated.Three-dimensional numerical simulations of the formation process of the EFP with tail as well as the ability to penetrate 45# steel were performed using LS-DYNA software,and the EFP ve-locity,the penetration ability,and the forming were assessed via experiments and x-ray photographs.The experimental results coincides with those of the simulations.Results indicate that the collision of the detonation wave was controlled to be a regular oblique reflection acting on the liner by setting the di-mensions of the unit charge and maintaining the pressure at the collision point region at more than 2.4 times the CJ detonation when the incident angle approached the critical angle.The distance from the liner midline to the boundary of the area within which the pressure ratio of the regular oblique reflection pressure to the CJ detonation pressure was greater than 2.5,2,and 1.5was approximately 0.66 mm,1.32 mm,and 3.3 mm,respectively.It is noted that pressure gradient caused the liner to turn inside out in the middle to form the head of the EFP and close the two tails of the EFP at approximately 120μs.The penetration depth of the EFP into a 45# steel target exceeded 30 mm,and there was radial expansion between the head and tail of the EFE increasing the penetration resistance of the EFP.Therefore,the structural size of the unit charge and the liner can be further optimized to reduce resistance to increase the penetration ability of the EFP. 相似文献
24.
Among the intrinsic properties of some materials, e.g., foams, porous materials, and granular materials, are their ability to mitigate shock waves. This paper investigated shock wave mitigation by a sandwich panel with a granular core. Numerical simulations and experimental tests were performed using Autodyn hydro-code software and a shock tube, respectively. The smoothed particle hydrodynamics (SPH) method was used to model granular materials. Sawdust and pumice, whose properties were determined by several compression tests, were used as granular materials in the sandwich panel core. These granular materials possess many mechanisms, including compacting (e.g., sawdust) and crushing (e.g., pumice) that mitigate shock/blast wave. The results indicated the ineffectiveness of using a core with low thickness, yet it was demonstrated to be effective with high thickness. Low-thickness pumice yielded better results for wave mitigation. The use of these materials with a core with appropriate core reduces up to 88% of the shock wave. The results of the experiments and numerical simulations were compared, suggesting a good agreement between the two. This indicates the accuracy of simulation and the ability of the SPH method to modeling granular material under shock loading. The effects of grain size and the coefficient of friction between grains have also been investigated using simulation, implying that increasing the grain size and coefficient of friction between grains both reduce overpressure. 相似文献
25.
Ammonium nitrate and fuel oil (ANFO) based explosive is a classic example of non-ideal high explosives. Its detonation is characterized by a strong dependence of detonation parameters on explosive charge diameter, presence and characteristics of confinement, as well as incomplete consumption of explosive at the sonic point.In this work we propose a detonation model based on the Wood-Kirkwood (WK) theory coupled with the thermochemical code EXPLO5 and supplemented with reaction rate models. Our objective is to analyze the validity of the model for highly non-ideal ANFO explosives, with emphasis on effect of reaction rate models.It was found that both single-step and two-step pressure-based models can be calibrated to reproduce experimental detonation velocity-charge radius data of ANFO at radii significantly above the failure radius (i.e. for D/Did > ∼0.6). Single-step pressure-based model, with the pressure exponent equal to 1.4, proved to be the most accurate, even in the vicinity of the failure radius. The impact of the rate models is most evident on temporal (and spatial) distribution of flow parameters in detonation driving zone, especially when it comes to the conversion and width of detonation driving zone. 相似文献
26.
Compression and flexure members such as columns and beams are critical in a structure as its failure could lead to the collapse of the structure. In the present work, numerical analysis of square and circle short columns, and reinforced concrete (RC) beams reinforced withfiber reinforced polymer composites are carried out. This work is divided into two parts. In thefirst part, numerical study of axial behavior of square and circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP)bars and spiral, and Carbon Fiber Reinforced Polymer (CFRP) wraps is conducted. The results of the first part showed that the axial capacity of the circular RC columns rein-forced with GFRP increases with the increase of the longitudinal reinforcement ratio. In addition, the results of the numerical analysis showed good correlation with the experimental ones. An interaction diagram for BFRP RC columns is also developed with considering various eccentricities. The results of numerical modeling of RC columns strengthened with CFRP wraps revealed that the number and the spacing between the CFRP wraps provide different levels of ductility enhancement to the column. For the cases considered in this study, column with two middle closely spaced CFRP wraps demonstrated the best performance. In the second part of this research,flexural behavior of RC beams reinforced with BFRP, GFRP and CFRP bars is investigated along with validation of the numerical model with the experimental tests. The results resembled the experimental observations that indicate significant effect of the FRP bar diameter and type ont he flexural capacity of the RC beams. It was also shown that Increasing the number of bars while keeping the same reinforcement ratio enhanced the stiffness of the RC beam. 相似文献
27.
《防务技术》2019,15(4):645-654
In order to study influence of tongue clearance on the hydraulic performance of double support vortex pump, three dimensional flow model with symmetric variable size tongue clearance was established by changing section parameter of tongue clearance, and applied to numerically simulate the steady inner flow in a vortex pump based on fixed working conditions and impeller through ANSYS FLUENT. The numerical results show the influence of tongue channel with two sections (non-uniform and uniform sections) on flow field characteristics in vortex pump. Firstly, the variation of tongue channel section changes the vortex structure distribution in circumferential flow channel. Specifically the spiral forward vortex structure in the circumferential direction shifts to large radius side with increasing tongue width. Secondly, the circumferential velocity gradient and axial pressure gradient both diminish with the increase of the tongue section, and the inlet/outlet pressure difference and velocity distribution also reduce with increasing tongue channel section. Finally, for vortex pump with non-uniform section of tongue channel, the head diminishes and the efficiency remains constant approximately with the increase of the tongue width, while the head and the efficiency both diminish for uniform section of tongue channel. 相似文献
28.
《防务技术》2019,15(5):815-820
The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem. It is generally considered that the waveform consists of overpressure peak, positive pressure zone and negative pressure zone. Most of current practice usually considers only the positive pressure. Many empirical relations are available to predict overpressure peak, the positive pressure action time and pressure decay law. However, there are few models that can predict the whole waveform. The whole process of explosion shock wave overpressure, which was expressed as the product of the three factor functions of peak, attenuation and oscillation, was proposed in the present work. According to the principle of explosion similarity, the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure. Parametric numerical simulations of free-field air explosions were conducted. By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves, the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion. In addition, through the model the shock wave overpressure at different time and distance can be displayed in three dimensions. The model makes the time needed for theoretical calculation much less than that for numerical simulation. 相似文献
29.
建立了侧壁式气垫船水压场计算的物理和数学模型,并提出了相应的求解方法.在侧壁高度与水深之比较小时,进行了数值求解,并将计算结果与实验作了比较,两者符合较好. 相似文献
30.
《防务技术》2022,18(10):1863-1874
The research of LEFP (linear explosive forming projectile) is of great value to the development of new warhead due to its excellent performance. To further improve the damage ability of the shaped charge warhead, a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge, in which case the crushing energy of LEFP could be guaranteed. LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points, the length of shell platform, the radius of curvature and the thickness of liner. The RSM (response surface model) between the molding parameters of LEFP and the structural parameters of charge was established. Based on RSM model, the structure of shaped charge was optimized by using multi-objective genetic algorithm. Meanwhile, the formation process of jet was analyzed by pulsed X-ray photography. The results show that the velocity, length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge. After the optimization of charge structure, the forming effect and penetration ability of LEPP had been significantly improved. The experimental data of jet velocity and length were consistent with the numerical results, which verifies the reliability of the numerical results. 相似文献