首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
  国内免费   1篇
  43篇
  2022年   5篇
  2021年   12篇
  2020年   7篇
  2019年   2篇
  2016年   1篇
  2014年   5篇
  2013年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1996年   4篇
排序方式: 共有43条查询结果,搜索用时 250 毫秒
21.
    
《防务技术》2022,18(9):1715-1726
High efficiency, environmental protection and sustainability have become the main theme of the development of the protection engineering, requiring that the components not only meet the basic functions, but also have chemical properties such as acid and alkali corrosion resistance and aging resistance. Polyisocyanate-oxazodone (POZD) polymer has the above characteristics, it also has the advantages of strong toughness, high strength and high elongation. The concrete slab sprayed with POZD material has excellent anti-blast performance. In order to explore the damage characteristics of POZD sprayed concrete slabs under the action of contact explosion thoroughly, the contact explosion test of POZD concrete slabs with different charges were carried out. On the basis of experimental verification, numerical simulation were used to study the influence of the thickness of the POZD on the blast resistance of the concrete slab. According to the test and numerical simulation results that as the thickness of the coating increases, the anti-blast performance of the concrete slab gradually increases, and the TNT equivalent required for critical failure is larger. Based on the above analysis, empirical expressions on normalized crater diameter, the normalized spall diameter and normalized spall diameter are obtained.  相似文献   
22.
《防务技术》2014,10(2):198-210
The ability to predict the natural fragmentation of an explosively loaded metal casing would represent a significant achievement. Physically-based material models permit the use of small scale laboratory tests to characterise and validate their parameters. The model can then be directly employed to understand and design the system of interest and identify the experiments required for validation of the predictions across a wide area of the performance space. This is fundamentally different to the use of phenomenologically based material algorithms which require a much wider range of characterisation and validation tests to be able to predict a reduced area of the performance space. Eulerians numerical simulation methods are used to describe the fragmentation of thick walled EN24 steel cylinders filled with PBXN-109 explosive. The methodology to characterise the constitutive response of the material using the physically based Armstrong–Zerilli constitutive model and the Goldthorpe path dependent fracture model is described, and the results are presented. The ability of an Eulerian hydrocode to describe the fragmentation process and reproduce the experimentally observed fragment mass and velocity distributions is presented and discussed. Finally the suitability of the current experimental analysis methodology for simulation validation is addressed.  相似文献   
23.
《防务技术》2014,10(3):279-284
In order to improve the benefits of base bleed in base flow field, the base flow with hot base bleed for two jet models is studied. Two-dimensional axisymmetric Navier–Stokes equations are computed by using a finite volume scheme. The base flow of a cylinder afterbody with base bleed is simulated. The simulation results are validated with the experimental data, and the experimental results are well reproduced. On this basis, the base flow fields with base bleed for a circular jet model and an annulus jet model are investigated by selecting the injection temperature from 830 K to 2200 K. The results show that the base pressure of the annular jet model is higher than that of the circular jet model with the changes of the injection parameter and the injection temperature. For the circular jet model, the hot gases are concentrated in the vicinity of the base. For the annular jet model, the bleed gases flow into the shear layer directly so that the hot gases are concentrated in the shear layer. The latter temperature distribution is better for the increase of base pressure.  相似文献   
24.
《防务技术》2014,10(1):66-75
The disturbance of flat and V-shaped sandwich reactive armor configurations to shaped-charge jet is studied by a numerical approach. The disturbing and cutting effects of the two reactive armor configurations to the jet are successfully captured. The predicted disturbance characteristics and patterns are in fairly good agreement with the X-ray photographic observations. The residual depth of penetration into a semi-infinitive homogeneous steel target behind the reactive armor is computed for a series of jet/armor parameters. For the flat configuration, it is demonstrated that the residual penetration depth is not significantly reduced for a normal impact while it is reduced up to 75% for an oblique impact. In comparison, the V-shaped configuration reduces the penetration depth of the jet to 90%, and it is observed that the penetration depth is not sensitive to the V-shaped angle.  相似文献   
25.
Among the intrinsic properties of some materials, e.g., foams, porous materials, and granular materials, are their ability to mitigate shock waves. This paper investigated shock wave mitigation by a sandwich panel with a granular core. Numerical simulations and experimental tests were performed using Autodyn hydro-code software and a shock tube, respectively. The smoothed particle hydrodynamics (SPH) method was used to model granular materials. Sawdust and pumice, whose properties were determined by several compression tests, were used as granular materials in the sandwich panel core. These granular materials possess many mechanisms, including compacting (e.g., sawdust) and crushing (e.g., pumice) that mitigate shock/blast wave. The results indicated the ineffectiveness of using a core with low thickness, yet it was demonstrated to be effective with high thickness. Low-thickness pumice yielded better results for wave mitigation. The use of these materials with a core with appropriate core reduces up to 88% of the shock wave. The results of the experiments and numerical simulations were compared, suggesting a good agreement between the two. This indicates the accuracy of simulation and the ability of the SPH method to modeling granular material under shock loading. The effects of grain size and the coefficient of friction between grains have also been investigated using simulation, implying that increasing the grain size and coefficient of friction between grains both reduce overpressure.  相似文献   
26.
Barbara 《防务技术》2021,17(5):1740-1752
Ammonium nitrate and fuel oil (ANFO) based explosive is a classic example of non-ideal high explosives. Its detonation is characterized by a strong dependence of detonation parameters on explosive charge diameter, presence and characteristics of confinement, as well as incomplete consumption of explosive at the sonic point.In this work we propose a detonation model based on the Wood-Kirkwood (WK) theory coupled with the thermochemical code EXPLO5 and supplemented with reaction rate models. Our objective is to analyze the validity of the model for highly non-ideal ANFO explosives, with emphasis on effect of reaction rate models.It was found that both single-step and two-step pressure-based models can be calibrated to reproduce experimental detonation velocity-charge radius data of ANFO at radii significantly above the failure radius (i.e. for D/Did > ∼0.6). Single-step pressure-based model, with the pressure exponent equal to 1.4, proved to be the most accurate, even in the vicinity of the failure radius. The impact of the rate models is most evident on temporal (and spatial) distribution of flow parameters in detonation driving zone, especially when it comes to the conversion and width of detonation driving zone.  相似文献   
27.
In this study, a nonlinear three-dimensional hydrocode numerical simulation was carried out using AUTODYN-3D to investigate the effect of blasting of a high explosive material (TNT) against several configurations of the composite structure. Several numerical models were carried out to study the effect of varying the thickness of the walls and the effect of adding an air layer or aluminum foam layer inside two layers of concrete in mitigating the effect of blast waves on the structure walls. The results showed that increasing the thickness of walls has a good effect on mitigating the effect of blast waves. When a layer of air was added, the effect of blast waves was exaggerated, while when a layer of aluminum foam was added the blast wave effects were mitigated with a reasonable percentage.  相似文献   
28.
《防务技术》2019,15(4):645-654
In order to study influence of tongue clearance on the hydraulic performance of double support vortex pump, three dimensional flow model with symmetric variable size tongue clearance was established by changing section parameter of tongue clearance, and applied to numerically simulate the steady inner flow in a vortex pump based on fixed working conditions and impeller through ANSYS FLUENT. The numerical results show the influence of tongue channel with two sections (non-uniform and uniform sections) on flow field characteristics in vortex pump. Firstly, the variation of tongue channel section changes the vortex structure distribution in circumferential flow channel. Specifically the spiral forward vortex structure in the circumferential direction shifts to large radius side with increasing tongue width. Secondly, the circumferential velocity gradient and axial pressure gradient both diminish with the increase of the tongue section, and the inlet/outlet pressure difference and velocity distribution also reduce with increasing tongue channel section. Finally, for vortex pump with non-uniform section of tongue channel, the head diminishes and the efficiency remains constant approximately with the increase of the tongue width, while the head and the efficiency both diminish for uniform section of tongue channel.  相似文献   
29.
《防务技术》2019,15(5):815-820
The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem. It is generally considered that the waveform consists of overpressure peak, positive pressure zone and negative pressure zone. Most of current practice usually considers only the positive pressure. Many empirical relations are available to predict overpressure peak, the positive pressure action time and pressure decay law. However, there are few models that can predict the whole waveform. The whole process of explosion shock wave overpressure, which was expressed as the product of the three factor functions of peak, attenuation and oscillation, was proposed in the present work. According to the principle of explosion similarity, the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure. Parametric numerical simulations of free-field air explosions were conducted. By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves, the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion. In addition, through the model the shock wave overpressure at different time and distance can be displayed in three dimensions. The model makes the time needed for theoretical calculation much less than that for numerical simulation.  相似文献   
30.
建立了侧壁式气垫船水压场计算的物理和数学模型,并提出了相应的求解方法.在侧壁高度与水深之比较小时,进行了数值求解,并将计算结果与实验作了比较,两者符合较好.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号