排序方式: 共有43条查询结果,搜索用时 0 毫秒
21.
《防务技术》2014,10(3):279-284
In order to improve the benefits of base bleed in base flow field, the base flow with hot base bleed for two jet models is studied. Two-dimensional axisymmetric Navier–Stokes equations are computed by using a finite volume scheme. The base flow of a cylinder afterbody with base bleed is simulated. The simulation results are validated with the experimental data, and the experimental results are well reproduced. On this basis, the base flow fields with base bleed for a circular jet model and an annulus jet model are investigated by selecting the injection temperature from 830 K to 2200 K. The results show that the base pressure of the annular jet model is higher than that of the circular jet model with the changes of the injection parameter and the injection temperature. For the circular jet model, the hot gases are concentrated in the vicinity of the base. For the annular jet model, the bleed gases flow into the shear layer directly so that the hot gases are concentrated in the shear layer. The latter temperature distribution is better for the increase of base pressure. 相似文献
22.
23.
The formation mechanism of an EFP(explosively formed projectile) using a double curvature liner under the overpressure effect generated by a regular oblique reflection was investigated in this paper.Based on the detonation wave propagation theory,the change of the incident angle of the detonation wave collision at different positions and the distribution area of the overpressure on the surface of the liner were calculated.Three-dimensional numerical simulations of the formation process of the EFP with tail as well as the ability to penetrate 45# steel were performed using LS-DYNA software,and the EFP ve-locity,the penetration ability,and the forming were assessed via experiments and x-ray photographs.The experimental results coincides with those of the simulations.Results indicate that the collision of the detonation wave was controlled to be a regular oblique reflection acting on the liner by setting the di-mensions of the unit charge and maintaining the pressure at the collision point region at more than 2.4 times the CJ detonation when the incident angle approached the critical angle.The distance from the liner midline to the boundary of the area within which the pressure ratio of the regular oblique reflection pressure to the CJ detonation pressure was greater than 2.5,2,and 1.5was approximately 0.66 mm,1.32 mm,and 3.3 mm,respectively.It is noted that pressure gradient caused the liner to turn inside out in the middle to form the head of the EFP and close the two tails of the EFP at approximately 120μs.The penetration depth of the EFP into a 45# steel target exceeded 30 mm,and there was radial expansion between the head and tail of the EFE increasing the penetration resistance of the EFP.Therefore,the structural size of the unit charge and the liner can be further optimized to reduce resistance to increase the penetration ability of the EFP. 相似文献
24.
Compression and flexure members such as columns and beams are critical in a structure as its failure could lead to the collapse of the structure. In the present work, numerical analysis of square and circle short columns, and reinforced concrete (RC) beams reinforced withfiber reinforced polymer composites are carried out. This work is divided into two parts. In thefirst part, numerical study of axial behavior of square and circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP)bars and spiral, and Carbon Fiber Reinforced Polymer (CFRP) wraps is conducted. The results of the first part showed that the axial capacity of the circular RC columns rein-forced with GFRP increases with the increase of the longitudinal reinforcement ratio. In addition, the results of the numerical analysis showed good correlation with the experimental ones. An interaction diagram for BFRP RC columns is also developed with considering various eccentricities. The results of numerical modeling of RC columns strengthened with CFRP wraps revealed that the number and the spacing between the CFRP wraps provide different levels of ductility enhancement to the column. For the cases considered in this study, column with two middle closely spaced CFRP wraps demonstrated the best performance. In the second part of this research,flexural behavior of RC beams reinforced with BFRP, GFRP and CFRP bars is investigated along with validation of the numerical model with the experimental tests. The results resembled the experimental observations that indicate significant effect of the FRP bar diameter and type ont he flexural capacity of the RC beams. It was also shown that Increasing the number of bars while keeping the same reinforcement ratio enhanced the stiffness of the RC beam. 相似文献
25.
Shockwaves from fuel-air explosive (FAE) cloud explosions may cause significant casualties. The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves. In this paper, a finite element model of multi-sources FAE explosion is established to simulate the process of multiple shockwaves propagation and interaction. The model is verified with the experimental data of a fourfold-source FAE explosion, with the total fuel mass of 340 kg. Simulation results show that the overpressure fields of multi-sources FAE explosions are different from that of the single-source. In the case of multi-sources, the overpressure fields are influenced significantly by source scattering distance and source number. Subsequently, damage ranges of overpressure under three different levels are calculated. Within a suitable source scattering distance, the damage range of multi-sources situation is greater than that of the single-source, under the same amount of total fuel mass. This research provides a basis for personnel shockwave protection from multi-sources FAE explosion. 相似文献
26.
Min Zhu Sheng-ao Wang Huang Huang Gui Huang Fei Wu Shao-hua Sun Biao Li Zi-jian Xu 《防务技术》2021,17(4):1444-1452
The response characteristics of the warhead under thermal stimuli conditions are important to the safety improvement. The goal of this study is to obtain data on the warhead in the fast cook-off process. In this paper, a numerical calculation method is proposed, whose reliability is supported by comparison with experimental results. Through the numerical calculation, the temperature distribution, temperature change, and ignition time are acquired. The numerical results show that the ignition time is 76 s after the warhead started to burn and that the maximum temperature of the explosive's outer surface is 238.3 C at the ignition time. The fast cook-off experiment of the warhead is implemented so as to get the flame temperature and reaction grades that are not available through numerical calculation. The experimental results show that the overpressure fails to reach the preset minimum value which is equivalent to 6 kg of TNT and that the reaction grade is deflagration. The research results have reference value for the design of the warhead and the reduction of detonation risks. 相似文献
27.
In this study, a nonlinear three-dimensional hydrocode numerical simulation was carried out using AUTODYN-3D to investigate the effect of blasting of a high explosive material (TNT) against several configurations of the composite structure. Several numerical models were carried out to study the effect of varying the thickness of the walls and the effect of adding an air layer or aluminum foam layer inside two layers of concrete in mitigating the effect of blast waves on the structure walls. The results showed that increasing the thickness of walls has a good effect on mitigating the effect of blast waves. When a layer of air was added, the effect of blast waves was exaggerated, while when a layer of aluminum foam was added the blast wave effects were mitigated with a reasonable percentage. 相似文献
28.
建立了侧壁式气垫船水压场计算的物理和数学模型,并提出了相应的求解方法.在侧壁高度与水深之比较小时,进行了数值求解,并将计算结果与实验作了比较,两者符合较好. 相似文献
29.
《防务技术》2022,18(10):1863-1874
The research of LEFP (linear explosive forming projectile) is of great value to the development of new warhead due to its excellent performance. To further improve the damage ability of the shaped charge warhead, a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge, in which case the crushing energy of LEFP could be guaranteed. LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points, the length of shell platform, the radius of curvature and the thickness of liner. The RSM (response surface model) between the molding parameters of LEFP and the structural parameters of charge was established. Based on RSM model, the structure of shaped charge was optimized by using multi-objective genetic algorithm. Meanwhile, the formation process of jet was analyzed by pulsed X-ray photography. The results show that the velocity, length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge. After the optimization of charge structure, the forming effect and penetration ability of LEPP had been significantly improved. The experimental data of jet velocity and length were consistent with the numerical results, which verifies the reliability of the numerical results. 相似文献
30.
《防务技术》2014,10(2):219-225
Global effects caused by the detonation of an IED near a military vehicle induce subsequent severe acceleration effects on the vehicle occupants. Two concepts to minimize these global effects were developed, with the help of a combined method based on a scaled experimental technology and numerical simulations. The first concept consists in the optimization of the vehicle shape to reduce the momentum transfer and thus the occupant loading. Three scaled V-shaped vehicles with different ground clearances were built and compared to a reference vehicle equipped with a flat floor. The second concept, called dynamic impulse compensation (DIC), is based on a momentum compensation technique. The principal possibility of this concept was demonstrated on a scaled vehicle. In addition, the numerical simulations have been performed with generic full size vehicles including dummy models, proving the capability of the DIC technology to reduce the occupant loading. 相似文献