首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   40篇
  国内免费   1篇
  2022年   1篇
  2021年   2篇
  2020年   8篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   11篇
  2010年   7篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1990年   1篇
排序方式: 共有127条查询结果,搜索用时 218 毫秒
91.
We consider the problem of scheduling n independent and simultaneously available jobs without preemption on a single machine, where the machine has a fixed maintenance activity. The objective is to find the optimal job sequence to minimize the total amount of late work, where the late work of a job is the amount of processing of the job that is performed after its due date. We first discuss the approximability of the problem. We then develop two pseudo‐polynomial dynamic programming algorithms and a fully polynomial‐time approximation scheme for the problem. Finally, we conduct extensive numerical studies to evaluate the performance of the proposed algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 172–183, 2016  相似文献   
92.
In this article, we define two different workforce leveling objectives for serial transfer lines. Each job is to be processed on each transfer station for c time periods (e.g., hours). We assume that the number of workers needed to complete each operation of a job in precisely c periods is given. Jobs transfer forward synchronously after every production cycle (i.e., c periods). We study two leveling objectives: maximin workforce size () and min range (R). Leveling objectives produce schedules where the cumulative number of workers needed in all stations of a transfer line does not experience dramatic changes from one production cycle to the next. For and a two‐station system, we develop a fast polynomial algorithm. The range problem is known to be NP‐complete. For the two‐station system, we develop a very fast optimal algorithm that uses a tight lower bound and an efficient procedure for finding complementary Hamiltonian cycles in bipartite graphs. Via a computational experiment, we demonstrate that range schedules are superior because not only do they limit the workforce fluctuations from one production cycle to the next, but they also do so with a minor increase in the total workforce size. We extend our results to the m‐station system and develop heuristic algorithms. We find that these heuristics work poorly for min range (R), which indicates that special structural properties of the m‐station problem need to be identified before we can develop efficient algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 577–590, 2016  相似文献   
93.
We introduce and study a generalization of the classic sequential testing problem, asking to identify the correct state of a given series system that consists of independent stochastic components. In this setting, costly tests are required to examine the state of individual components, which are sequentially tested until the correct system state can be uniquely identified. The goal is to propose a policy that minimizes the expected testing cost, given a‐priori probabilistic information on the stochastic nature of each individual component. Unlike the classic setting, where variables are tested one after the other, we allow multiple tests to be conducted simultaneously, at the expense of incurring an additional set‐up cost. The main contribution of this article consists in showing that the batch testing problem can be approximated in polynomial time within factor , for any fixed . In addition, we explain how, in spite of its highly nonlinear objective function, the batch testing problem can be formulated as an approximate integer program of polynomial size, while blowing up its expected cost by a factor of at most . Finally, we conduct extensive computational experiments, to demonstrate the practical effectiveness of these algorithms as well as to evaluate their limitations. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 275–286, 2016  相似文献   
94.
In this article, we study a class of new scheduling models where time slot costs have to be taken into consideration. In such models, processing a job will incur certain cost which is determined by the time slots occupied by the job in a schedule. The models apply when operational costs vary over time. The objective of the scheduling models is to minimize the total time slot costs plus a traditional scheduling performance measure. We consider the following performance measures: total completion time, maximum lateness/tardiness, total weighted number of tardy jobs, and total tardiness. We prove the intractability of the models under general parameters and provide polynomial‐time algorithms for special cases with non‐increasing time slot costs.© 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
95.
慢刀伺服车削技术是一种特殊的创成加工方法,采用C轴、X轴、Z轴联动的方式在极坐标或圆柱坐标内可车削加工自由曲面光学元件。但是由于各种误差因素的影响,使用慢刀伺服技术仅加工一次获得的光学元件可能不满足精度指标。为此需要研究能够进一步提升慢刀伺服车削加工精度的误差补偿技术。Zernike多项式是面形分析与光学分析之间的理想接口工具,因此本文使用Zernike多项式拟合的方法处理慢刀伺服车削加工的误差,并根据慢刀伺服加工技术的特点,建立慢刀伺服车削加工的误差补偿算法。实验结果表明,基于Zernike多项式拟合的慢刀伺服车削加工误差补偿技术可有效地针对加工中产生的特定误差进行补偿,从而提高自由曲面车削加工精度。  相似文献   
96.
在故障诊断过程中 ,每个测试点检测故障所需的时间可能不同。对于每个测试点一次检测所有可检测故障点的问题已经获得解决。对于每个测试点一次只能检测一个故障点 ,分两种情况加以讨论。若要求检测时间之和最小 ,给出了最优算法 ;若要求最大检测时间最小 ,证明了其是NP完全问题 ,并给出近似算法。最后给出一个实例对算法加以说明  相似文献   
97.
针对功率放大器的非线性特性及记忆效应,提出了一种基于记忆有理函数的功放行为模型。在传统记忆多项式模型和无记忆有理函数模型基础上,构建记忆有理函数模型,并利用共轭梯度法辨识模型系数,同时比较不同记忆深度和不同非线性阶数下的归一化均方误差,获取最佳记忆深度和非线性阶数。采用多载波的WCDMA信号和MRF6S21140H功放来验证模型的有效性,并与记忆多项式模型、无记忆有理函数模型进行了比较。结果表明,记忆有理函数模型在减少系数数目的同时具有更好的逼近精度。  相似文献   
98.
We consider a pricing problem in directed, uncapacitated networks. Tariffs must be defined by an operator, the leader, for a subset of m arcs, the tariff arcs. Costs of all other arcs in the network are assumed to be given. There are n clients, the followers, and after the tariffs have been determined, the clients route their demands independent of each other on paths with minimal total cost. The problem is to find tariffs that maximize the operator's revenue. Motivated by applications in telecommunication networks, we consider a restricted version of this problem, assuming that each client utilizes at most one of the operator's tariff arcs. The problem is equivalent to pricing bridges that clients can use in order to cross a river. We prove that this problem is APX‐hard. Moreover, we analyze the effect of uniform pricing, proving that it yields both an m approximation and a (1 + lnD)‐approximation. Here, D is upper bounded by the total demand of all clients. In addition, we consider the problem under the additional restriction that the operator must not reject any of the clients. We prove that this problem does not admit approximation algorithms with any reasonable performance guarantee, unless P = NP, and we prove the existence of an n‐approximation algorithm. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
99.
Maintenance scheduling for modular systems: Modeling and algorithms   总被引:1,自引:0,他引:1       下载免费PDF全文
We study new models of scheduled maintenance management for modular systems, consisting of multiple components with respective cycle limits. The cycle limit of each component specifies the time interval in which this component must be repaired or replaced. The goal is to compute a feasible maintenance schedule that minimizes the cost associated with component maintenance. Applications of these models arise in Air Force aircraft maintenance as well as in other arenas with required preventive maintenance. The typical cost structures that arise in practical settings are submodular, which make the resulting models computationally challenging. We develop two efficient and operationally tenable approximation algorithms. We prove constant factor worst‐case guarantees for both algorithms, and present computational experiments showing that these algorithms perform within a few percent of optimality on operationally relevant instances. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 472–488, 2014  相似文献   
100.
This article introduces the twin robots scheduling problem (TRSP), in which two robots positioned at the opposite ends of a rail are required to deliver items to positions along the rail, and the objective is to minimize the makespan. A proof of ‐hardness of the TRSP is presented, along with exact and heuristic algorithms. Computational results on challenging instances are provided.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 119–130, 2014  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号