首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1986年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有7条查询结果,搜索用时 27 毫秒
1
1.
Abdel Hameed and Shimi [1] in a recent paper considered a shock model with additive damage. This note generalizes the work of Abdel Hameed and Shimi by showing that the a-priori restriction to replacement at a shock time made in [1] is unnecessary.  相似文献   
2.
A production system which generates income is subject to random failure. Upon failure, the system is replaced by a new identical one and the replacement cycles are repeated indefinitely. In our breakdown model, shocks occur to the system in a Poisson stream. Each shock causes a random amount of damage, and these damages accumulate additively. The failure time depends on the accumulated damage in the system. The income from the system and the cost associated with a planned replacement depend on the accumulated damage in the system. An additional cost is incurred at each failure in service. We allow a controller to replace the system at any stopping time T before failure time. We will consider the problem of specifying a replacement rule that is optimal under the following criteria: maximum total long-run average net income per unit time, and maximum total long-run expected discounted net income. Our primary goal is to introduce conditions under which an optimal policy is a control limit policy and to investigate how the optimal policy can be obtained. Examples will be presented to illustrate computational procedures.  相似文献   
3.
This article considers a particular printed circuit board (PCB) assembly system employing surface mount technology. Multiple, identical automatic placement machines, a variety of board types, and a large number of component types characterize the environment studied. The problem addressed is that of minimizing the makespan for assembling a batch of boards with a secondary objective of reducing the mean flow time. The approach adopted is that of grouping boards into production families, allocating component types to placement machines for each family, dividing of families into board groups with similar processing times, and the scheduling of groups. A complete setup is incurred only when changing over between board families. For the environment studied, precedence constraints on the order of component placement do not exist, and placement times are independent of feeder location. Heuristic solution procedures are proposed to create board subfamilies (groups) for which the component mounting times are nearly identical within a subfamily. Assignment of the same component type to multiple machines is avoided. The procedures use results from the theory of open-shop scheduling and parallel processor scheduling to sequence boards on machines. Note that we do not impose an open-shop environment but rather model the problem in the context of an open shop, because the order of component mountings is immaterial. Three procedures are proposed for allocating components to machines and subsequently scheduling boards on the machines. The first two procedures assign components to machines to balance total work load. For scheduling purposes, the first method groups boards into subfamilies to adhere to the assumptions of the open-shop model, and the second procedure assumes that each board is a subfamily and these are scheduled in order of shortest total processing time. The third procedure starts by forming board subfamilies based on total component similarity and then assigns components to validate the open-shop model. We compare the performance of the three procedures using estimated daily, two-day, and weekly production requirements by averaging quarterly production data for an actual cell consisting of five decoupled machines. © 1994 John Wiley & Sons, Inc.  相似文献   
4.
A system receives shocks at random points of time. Each shock causes a random amount of damage which accumulates over time. The system fails when the accumulated damage exceeds a fixed threshold. Upon failure the system is replaced by a new one. The damage process is controlled by means of a maintenance policy. There are M possible maintenance actions. Given that a maintenance action m is employed, then the cumulative damage decreases at rate rm. Replacement costs and maintenance costs are considered. The objective is to determine an optimal maintenance policy under the following optimality criteria: (1) long-run average cost; (2) total expected discounted cost over an infinite horizon. For a diffusion approximation, we show that the optimal maintenance expenditure rate is monotonically increasing in the cumulative damage level.  相似文献   
5.
This paper develops a methodology for optimizing operation of a multipurpose reservoir with a finite capacity V. The input of water into the reservoir is a Wiener process with positive drift. There are n purposes for which water is demanded. Water may be released from the reservoir at any rate, and the release rate can be increased or decreased instantaneously with zero cost. In addition to the reservoir, a supplementary source of water can supply an unlimited amount of water demanded during any period of time. There is a cost of Ci dollars per unit of demand supplied by the supplementary source to the ith purpose (i = 1, 2, …, n). At any time, the demand rate Ri associated with the ith purpose (i = 1, 2, …, n) must be supplied. A controller must continually decide the amount of water to be supplied by the reservoir for each purpose, while the remaining demand will be supplied through the supplementary source with the appropriate costs. We consider the problem of specifying an output policy which minimizes the long run average cost per unit time.  相似文献   
6.
This article examines a relaxed version of the generic vehicle routing problem. In this version, a delivery to a demand point can be split between any number of vehicles. In spite of this relaxation the problem remains computationally hard. Since only small instances of the vehicle routing problem are known to be solved using exact methods, the vehicle route construction for this problem version is approached using heuristic rules. The main contribution of this article to the existing body of literature on vehicle routing issues in (a) is presenting a new vehicle routing problem amenable to practical applications, and (b) demonstrating the potential for cost savings over similar “traditional” vehicle routing when implementing the model and solutions presented here. The solution scheme allowing for split deliveries is compared with a solution in which no split deliveries are allowed. The comparison is conducted on six sets of 30 problems each for problems of size 75, 115, and 150 demand points (all together 540 problems). For very small demands (up to 10% of vehicle's capacity) no significant difference in solutions is evident for both solution schemes. For the other five problem sets for which point demand exceeds 10% of vehicle's capacity, very significant cost savings are realized when allowing split deliveries. The savings are significant both in the total distance and the number of vehicles required. The vehicles' routes constructed by our procedure tend to cover cohesive geographical zones and retain some properties of optimal solutions.  相似文献   
7.
A centralized inventory system serves a number of stores with common ownership, and thus reliable and timely information sharing. Each of them pays a share of the inventory cost, and the reward structure leaves the owners of individual stores rewarded for their individual performance. Appropriate selection of a cost allocation method is important if such a centralized system is to last. In this work we propose three necessary criteria—stability (core of a related cooperative game), justifiability (consistency of benefits with costs), and polynomial computability. For a concrete example we demonstrate that common allocation procedures may not meet all three tests, and we present a method that that meets all three criteria. This kind of cost allocation analysis helps the common management to evaluate the trade-offs in choosing an allocation scheme for the cost of inventory centralization. © 1996 John Wiley & Sons, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号