首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有3条查询结果,搜索用时 863 毫秒
1
1.
In a recent article, Chandra and Singpurwalla have pointed out the close relationship between the Lorenz curve, which is frequently used when illustrating income distributions in economics, and the total-time-on-test transform (TTT transform), which has proved to be a very useful tool in reliability. They also presented some characterizations of aging properties by using the Lorenz curve. The purpose of this article is to point out some further results in the same area and to give reliability interpretations of some common measures of income inequality.  相似文献   
2.
Different properties of the HNBUE (HNWUE) class of life distributions (i.e.), for which \documentclass{article}\pagestyle{empty}\begin{document}$\int_t^\infty {\,\,\,\mathop F\limits^-(x)\,dx\, \le \,(\ge)\,\mu }\]$\end{document} exp(?t/μ) for t ≥ 0, where μ = \documentclass{article}\pagestyle{empty}\begin{document}$\int_t^\infty {\,\,\,\mathop F\limits^-(x)\,dx}$\end{document} are presented. For instance we characterize the HNBUE (HNWUE) property by using the Laplace transform and present some bounds on the survival function of a HNBUE (HNWUE) life distribution. We also examine whether the HNBUE (HNWUE) property is preserved under the reliability operations (i) formation of coherent structure, (ii) convolution and (iii) mixture. The class of distributions with the discrete HNBUE (discrete HNWUE) property (i.e.), for which \documentclass{article}\pagestyle{empty}\begin{document}$\sum\limits_{j=k}^\infty {\mathop{\mathop P\limits^-_{j\,\,\,}\, \le(\ge)\,\mu(1 - 1/\mu)^{^k }}\limits^{}} $\end{document} for k = 0, 1, 2, ?, where μ =\documentclass{article}\pagestyle{empty}\begin{document}$\sum\limits_{j=0}^\infty {\mathop {\mathop P\limits^- _{j\,\,\,\,\,}and\mathop P\limits^ - _{j\,\,\,\,\,}=}\limits^{}}\,\,\sum\limits_{k=j+1}^\infty {P_k)}$\end{document} is also studied.  相似文献   
3.
The ordinary age replacement problem consists of finding an optimal age at which a unit, needed in a continuous production process, should be replaced in order to minimize the average long-run cost per unit time. Bergman introduced a graphical procedure based on the total-time-on-test (TTT) concept for the analysis of the age replacement problem. In this article, that idea is generalized to the situation of discounted costs. We also study a more general age replacement problem in which we have a form of imperfect repair.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号