首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2001年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Consider a binary, monotone system of n components. The assessment of the parameter vector, θ, of the joint distribution of the lifetimes of the components and hence of the reliability of the system is often difficult due to scarcity of data. It is therefore important to make use of all information in an efficient way. For instance, prior knowledge is often of importance and can indeed conveniently be incorporated by the Bayesian approach. It may also be important to continuously extract information from a system currently in operation. This may be useful both for decisions concerning the system in operation as well as for decisions improving the components or changing the design of similar new systems. As in Meilijson [12], life‐monitoring of some components and conditional life‐monitoring of some others is considered. In addition to data arising from this monitoring scheme, so‐called autopsy data are observed, if not censored. The probabilistic structure underlying this kind of data is described, and basic likelihood formulae are arrived at. A thorough discussion of an important aspect of this probabilistic structure, the inspection strategy, is given. Based on a version of this strategy a procedure for preventive system maintenance is developed and a detailed application to a network system presented. All the way a Bayesian approach to estimation of θ is applied. For the special case where components are conditionally independent given θ with exponentially distributed lifetimes it is shown that the weighted sum of products of generalized gamma distributions, as introduced in Gåsemyr and Natvig [7], is the conjugate prior for θ. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 551–577, 2001.  相似文献   
2.
This paper is concerned with the joint prior distribution of the dependent reliabilities of the components of a binary system. When this distribution is MTP2 (Multivariate Totally Positive of Order 2), it is shown in general that this actually makes the machinery of Natvig and Eide [7] available to arrive at the posterior distribution of the system's reliability, based on data both at the component and system level. As an illustration in a common environmental stress case, the joint prior distribution of the reliabilities is shown to have the MTP2 property. We also show, similarly to Gåsemyr and Natvig [3], for the case of independent components given component reliabilities how this joint prior distribution may be based on the combination of expert opinions. A specific system is finally treated numerically. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 741–755, 1997  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号