首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2020年   1篇
  2009年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 101 毫秒
1
1.
With dual-channel choices, E-retailers fulfill their demands by either the inventory stored in third-party distribution centers, or by in-house inventory. In this article, using data from a wedding gown E-retailer in China, we analyze the differences between two fulfillment choices—fulfillment by Amazon (FBA) and fulfillment by seller (FBS). In particular, we want to understand the impact of FBA that will bring to sales and profit, compared to FBS, and how the impact is related to product features such as sizes and colors. We develop a risk-adjusted fulfillment model to address this problem, where the E-retailer's risk attitude to FBA is incorporated. We denote the profit gaps between FBA and FBS as the rewards for this E-retailer fulfilling products using FBA, our goal is to maximize the E-retailer's total rewards using predictive analytics. We adopt the generalized linear model to predict the expected rewards, while controlling for the variability of the reward distribution. We apply our model on a set of real data, and develop an explicit decision rule that can be easily implemented in practice. The numerical experiments show that our interpretable decision rule can improve the E-retailer's total rewards by more than 35%.  相似文献   
2.
This paper considers a warehouse sizing problem whose objective is to minimize the total cost of ordering, holding, and warehousing of inventory. Unlike typical economic lot sizing models, the warehousing cost structure examined here is not the simple unit rate type, but rather a more realistic step function of the warehouse space to be acquired. In the cases when only one type of stock‐keeping unit (SKU) is warehoused, or when multiple SKUs are warehoused, but, with separable inventory costs, closed form solutions are obtained for the optimal warehouse size. For the case of multi‐SKUs with joint inventory replenishment cost, a heuristic with a provable performance bound of 94% is provided. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 299–312, 2001  相似文献   
3.
Logistical planning problems are complicated in practice because planners have to deal with the challenges of demand planning and supply replenishment, while taking into account the issues of (i) inventory perishability and storage charges, (ii) management of backlog and/or lost sales, and (iii) cost saving opportunities due to economies of scale in order replenishment and transportation. It is therefore not surprising that many logistical planning problems are computationally difficult, and finding a good solution to these problems necessitates the development of many ad hoc algorithmic procedures to address various features of the planning problems. In this article, we identify simple conditions and structural properties associated with these logistical planning problems in which the warehouse is managed as a cross‐docking facility. Despite the nonlinear cost structures in the problems, we show that a solution that is within ε‐optimality can be obtained by solving a related piece‐wise linear concave cost multi‐commodity network flow problem. An immediate consequence of this result is that certain classes of logistical planning problems can be approximated by a factor of (1 + ε) in polynomial time. This significantly improves upon the results found in literature for these classes of problems. We also show that the piece‐wise linear concave cost network flow problem can be approximated to within a logarithmic factor via a large scale linear programming relaxation. We use polymatroidal constraints to capture the piece‐wise concavity feature of the cost functions. This gives rise to a unified and generic LP‐based approach for a large class of complicated logistical planning problems. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号