首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Consider a birth and death process starting in state 0. Keilson has shown by analytical arguments that the time of first passage into state n has an increasing failure rate (IFR) distribution. We present a probabilistic proof for this. In addition, our proof shows that for a nonnegative diffusion process, the first passage time from state 0 to any state x is IFR.  相似文献   
2.
This paper reconsiders the classical model for selling an asset in which offers come in daily and a decision must then be made as to whether or not to sell. For each day the item remains unsold a continuation (or maintenance cost) c is incurred. The successive offers are assumed to be independent and identically distributed random variables having an unknown distribution F. The model is considered both in the case where once an offer is rejected it may not be recalled at a later time and in the case where such recall of previous offers is allowed.  相似文献   
3.
The first problem considered in this paper is concerned with the assembly of independent components into parallel systems so as to maximize the expected number of systems that perform satisfactorily. Associated with each component is a probability of it performing successfully. It is shown that an optimal assembly is obtained if the reliability of each assembled system can be made equal. If such equality is not attainable, then bounds are given so that the maximum expected number of systems that perform satisfactorily will lie within these stated bounds; the bounds being a function of an arbitrarily chosen assembly. An improvement algorithm is also presented. A second problem treated is concerned with the optimal design of a system. Instead of assembling given units, there is an opportunity to “control” their quality, i.e., the manufacturer is able to fix the probability, p, of a unit performing successfully. However, his resources, are limited so that a constraint is imposed on these probabilities. For (1) series systems, (2) parallel systems, and (3) k out of n systems, results are obtained for finding the optimal p's which maximize the reliability of a single system, and which maximize the expected number of systems that perform satisfactorily out of a total assembly of J systems.  相似文献   
4.
Let , where A (t)/t is nondecreasing in t, {P(k)1/k} is nonincreasing. It is known that H(t) = 1 — H (t) is an increasing failure rate on the average (IFRA) distribution. A proof based on the IFRA closure theorem is given. H(t) is the distribution of life for systems undergoing shocks occurring according to a Poisson process where P (k) is the probability that the system survives k shocks. The proof given herein shows there is an underlying connection between such models and monotone systems of independent components that explains the IFRA life distribution occurring in both models.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号