首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  2018年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Wildfire managers use initial attack (IA) to control wildfires before they grow large and become difficult to suppress. Although the majority of wildfire incidents are contained by IA, the small percentage of fires that escape IA causes most of the damage. Therefore, planning a successful IA is very important. In this article, we study the vulnerability of IA in wildfire suppression using an attacker‐defender Stackelberg model. The attacker's objective is to coordinate the simultaneous ignition of fires at various points in a landscape to maximize the number of fires that cannot be contained by IA. The defender's objective is to optimally dispatch suppression resources from multiple fire stations located across the landscape to minimize the number of wildfires not contained by IA. We use a decomposition algorithm to solve the model and apply the model on a test case landscape. We also investigate the impact of delay in the response, the fire growth rate, the amount of suppression resources, and the locations of fire stations on the success of IA.  相似文献   
2.
There is significant value in the data collected by satellites during and after a natural disaster. The current operating paradigm in practice is for satellites to passively collect data when they happen to fly over a disaster location. Conversely, this article considers the alternative approach of actively maneuvering satellites to fly directly overhead of the disaster site on a routine basis. Toward this end, we seek to compute a satellite constellation design that minimizes the expected maneuver costs for monitoring an unknown forest fire. In this article, we present a 2‐stage stochastic programing model for this problem as well as a accelerated L‐shaped decomposition approach. A comparison between our approach and the current operating paradigm indicates that our solution provides longer duration data collections and a greater number of data collections. Analysis also shows that our proposed solution is robust over a wide array of scenarios.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号