首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  2018年   1篇
  1981年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Inventory systems with returns are systems in which there are units returned in a repairable state, as well as demands for units in a serviceable state, where the return and demand processes are independent. We begin by examining the control of a single item at a single location in which the stationary return rate is less than the stationary demand rate. This necessitates an occasional procurement of units from an outside source. We present a cost model of this system, which we assume is managed under a continuous review procurement policy, and develop a solution method for finding the policy parameter values. The key to the analysis is the use of a normally distributed random variable to approximate the steady-state distribution of net inventory. Next, we study a single item, two echelon system in which a warehouse (the upper echelon) supports N(N ? 1) retailers (the lower echelon). In this case, customers return units in a repairable state as well as demand units in a serviceable state at the retailer level only. We assume the constant system return rate is less than the constant system demand rate so that a procurement is required at certain times from an outside supplier. We develop a cost model of this two echelon system assuming that each location follows a continuous review procurement policy. We also present an algorithm for finding the policy parameter values at each location that is based on the method used to solve the single location problem.  相似文献   
2.
This article provides a modeling framework for quantifying cost and optimizing motion plans in combat situations with rapid weapon fire, multiple agents, and attacker uncertainty characterized by uncertain parameters. Recent developments in numerical optimal control enable the efficient computation of numerical solutions for optimization problems with multiple agents, nonlinear dynamics, and a broad class of objectives. This facilitates the application of more realistic, equipment‐based combat models, which track both more realistic models, which track both agent motion and dynamic equipment capabilities. We present such a framework, along with a described algorithm for finding numerical solutions, and a numerical example.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号