首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
  1986年   2篇
  1984年   1篇
  1972年   1篇
排序方式: 共有25条查询结果,搜索用时 140 毫秒
1.
We consider the problem of sequencing n jobs on a single machine, with each job having a processing time and a common due date. The common due date is assumed to be so large that all jobs can complete by the due date. It is known that there is an O(n log n)‐time algorithm for finding a schedule with minimum total earliness and tardiness. In this article, we consider finding a schedule with dual criteria. The primary goal is to minimize the total earliness and tardiness. The secondary goals are to minimize: (1) the maximum earliness and tardiness; (2) the sum of the maximum of the squares of earliness and tardiness; (3) the sum of the squares of earliness and tardiness. For the first two criteria, we show that the problems are NP‐hard and we give a fully polynomial time approximation scheme for both of them. For the last two criteria, we show that the ratio of the worst schedule versus the best schedule is no more than . © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 422–431, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10020  相似文献   
2.
3.
We consider the problem of scheduling a set of n jobs on a single batch machine, where several jobs can be processed simultaneously. Each job j has a processing time pj and a size sj. All jobs are available for processing at time 0. The batch machine has a capacity D. Several jobs can be batched together and processed simultaneously, provided that the total size of the jobs in the batch does not exceed D. The processing time of a batch is the largest processing time among all jobs in the batch. There is a single vehicle available for delivery of the finished products to the customer, and the vehicle has capacity K. We assume that K = rD, where and r is an integer. The travel time of the vehicle is T; that is, T is the time from the manufacturer to the customer. Our goal is to find a schedule of the jobs and a delivery plan so that the service span is minimized, where the service span is the time that the last job is delivered to the customer. We show that if the jobs have identical sizes, then we can find a schedule and delivery plan in time such that the service span is minimum. If the jobs have identical processing times, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most 11/9 times the optimal service span. When the jobs have arbitrary processing times and arbitrary sizes, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most twice the optimal service span. We also derive upper bounds of the absolute worst‐case ratios in both cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 470–482, 2015  相似文献   
4.
Extending Sastry's result on the uncapacitated two‐commodity network design problem, we completely characterize the optimal solution of the uncapacitated K‐commodity network design problem with zero flow costs for the case when K = 3. By solving a set of shortest‐path problems on related graphs, we show that the optimal solutions can be found in O(n3) time when K = 3, where n is the number of nodes in the network. The algorithm depends on identifying a list of “basic patterns”; the number of basic patterns grows exponentially with K. We also show that the uncapacitated K‐commodity network design problem can be solved in O(n3) time for general K if K is fixed; otherwise, the time for solving the problem is exponential. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
5.
We consider the problem of scheduling orders on identical machines in parallel. Each order consists of one or more individual jobs. A job that belongs to an order can be processed by any one of the machines. Multiple machines can process the jobs of an order concurrently. No setup is required if a machine switches over from one job to another. Each order is released at time zero and has a positive weight. Preemptions are not allowed. The completion time of an order is the time at which all jobs of that order have been completed. The objective is to minimize the total weighted completion time of the orders. The problem is NP‐hard for any fixed number (≥2) of machines. Because of this, we focus our attention on two classes of heuristics, which we refer to as sequential two‐phase heuristics and dynamic two‐phase heuristics. We perform a worst case analysis as well as an empirical analysis of nine heuristics. Our analyses enable us to rank these heuristics according to their effectiveness, taking solution quality as well as running time into account. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
6.
Multi-echelon logistic systems are essential parts of the service support function of high technology firms. The combination of technological developments and competitive pressures has led to the development of services systems with a unique set of characteristics. These characteristics include (1) low demand probabilities: (2) high cost items; (3) complex echelon structures; (4) existence of pooling mechanisms among stocking locations at the same echelon level; (5) high priority for service, which is often expressed in terms of response time service levels for product groups of items: (6) scrapping of failed parts; and (7) recycling of issued stock due to diagnostic use. This article develops a comprehensive model of a stochastic, multi-echelon inventory system that takes account of the above characteristics. Solutions to the constrained optimization problem are found using a branch and bound procedure. The results of applying this procedure to a spare parts inventory system for a computer manufacturer have led to a number of important policy conclusions.  相似文献   
7.
8.
This paper considers a problem of locating new facilities in the plane with respect to existing facilities, the locations of which are known. The problem consists of finding locations of new facilities which will minimize a total cost function which consists of a sum of costs directly proportional to the Euclidian distances among the new facilities, and costs directly proportional to the Euclidian distances between new and existing facilities. It is established that the total cost function has a minimum; necessary conditions for a mimumum are obtained; necessary and sufficient conditions are obtained for the function to be strictly convex (it is always convex); when the problem is “well structured,” it is established that for a minimum cost solution the locations of the new facilities will lie in the convex hull of the locations of the existing facilities. Also, a dual to the problem is obtained and interpreted; necessary and sufficient conditions for optimum solutions to the problem, and to its dual, are developed, as well as complementary slackness conditions. Many of the properties to be presented are motivated by, based on, and extend the results of Kuhn's study of the location problem known as the General Fermat Problem.  相似文献   
9.
A heuristic solution procedure for set covering is presented that works well for large, relatively dense problems. In addition, a confidence interval is established about the unknown global optimum. Results are presented for 30 large randomly generated problems.  相似文献   
10.
This paper explores the relationship between human capital and international conflict. In theory, human capital may increase the opportunity cost of military service and the economic cost of injury and loss of life in combat; it may decrease the benefits of conflict as human capital cannot be easily appropriated or transferred; it may affect societal norms toward peace and war; and it may alter military productivity through new technology and complementarities between military technology and personnel. Using a panel of politically relevant dyads, I find robust empirical evidence that human capital may significantly decrease the likelihood of militarized conflict between nations. In short, the findings suggest that promoting human capital‐oriented development may help to increase peace in the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号