首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  2020年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
The idea of deploying noncollocated sources and receivers in multistatic sonar networks (MSNs) has emerged as a promising area of opportunity in sonar systems. This article is one of the first to address point coverage problems in MSNs, where a number of points of interest have to be monitored in order to protect them from hostile underwater assets. We consider discrete “definite range” sensors as well as various diffuse sensor models. We make several new contributions. By showing that the convex hull spanned by the targets is guaranteed to contain optimal sensor positions, we are able to limit the solution space. Under a definite range sensor model, we are able to exclude even more suboptimal solutions. We then formulate a nonlinear program and an integer nonlinear program to express the sensor placement problem. To address the nonconvex single‐source placement problem, we develop the Divide Best Sector (DiBS) algorithm, which quickly provides an optimal source position assuming fixed receivers. Starting with a basic implementation of DiBS, we show how incorporating advanced sector splitting methods and termination conditions further improve the algorithm. We also discuss two ways to use DiBS to find multiple source positions by placing sensors iteratively or simultaneously. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 287–304, 2017  相似文献   
2.
The allocation of underwater sensors for tracking, localization, and surveillance purposes is a fundamental problem in anti-submarine warfare. Inexpensive passive receivers have been heavily utilized in recent years; however, modern submarines are increasingly quiet and difficult to detect with receivers alone. Recently, the idea of deploying noncollocated sources and receivers has emerged as a promising alternative to purely passive sensor fields and to traditional sonar fields composed of collocated sources and receivers. Such a multistatic sonar network carries a number of advantages, but it also brings increased system complexity resulting from its unusual coverage patterns. In this work, we study the problem of optimally positioning active multistatic sonar sources for a point coverage application where all receivers and points of interest are fixed and stationary. Using a definite range sensor model, we formulate exact methods and approximation algorithms for this problem and compare these algorithms via computational experiments. We also examine the performance of these algorithms on a discrete approximation of a continuous area coverage problem and find that they offer a significant improvement over two types of random sensor deployment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号