首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2014年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
《防务技术》2019,15(3):241-253
This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve – a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in on-going developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.  相似文献   
2.
研究了一种由超高分子量聚乙烯(UHMWPE)纤维增强的新型纤维混凝土基本力学性能。针对C70等级高强混凝土,设计了四种体积掺量纤维混凝土,通过立方体抗压、劈裂抗拉和四点弯曲抗折试验,分析了纤维掺量对混凝土力学性能的影响。结果表明:UHMWPE纤维对混凝土的抗压强度增强作用不明显,但较大提高了混凝土的抗拉强度和抗折强度,且对混凝土有很好的阻裂、增韧效果。在纤维体积掺量为0.3%~0.5%时,劈裂抗拉强度提高25%以上;掺量0.5%时,弯曲抗折强度提高率超过23%。  相似文献   
3.
UHMWPE复合材料抗爆实验研究   总被引:1,自引:0,他引:1  
运用定制的聚偏四氟乙烯(PVDF)压电传感器,直接测量爆炸载荷下UHMWPE层叠无纬布和PU基体的UHMWPE复合材料内部冲击波压力峰值,对其冲击波衰减特性进行了实验研究。实验结果表明:UHMWPE复合材料对爆炸冲击波有很好的衰减作用,含有PU基体的UHMWPE复合材料比UHMWPE层叠无纬布对爆炸冲击波有更好的衰减效果。UHMWPE复合材料具有轻质、吸收冲击波效率高等特性,在爆炸冲击波防护领域有很好的应用前景。  相似文献   
4.
Ian G.Crouch 《防务技术》2021,17(6):1887-1894
The ballistic performance, and behaviour, of an armour system is governed by two major sets of variables, geometrical and material. Of these, the consistency of performance, especially against small arms ammunition, will depend upon the consistency of the properties of the constituent materials. In a body armour system for example, fibre diameter, areal density of woven fabric, and bulk density of ceramic are examples of critical parameters and monitoring such parameters will form the backbone of associated quality control procedures. What is often overlooked, because it can fall into the User’s domain, are the interfaces that exist between the various products; the carrier, the Soft Armour Insert (SAI), and the one or two hard armour plates (HAP1 and HAP2). This is especially true if the various products are sourced from different suppliers.There are between 30 and 150 individual layers within a typical body armour system, and each of the interfaces between each of those layers will, in some way or another, contribute to the ballistic performance of the system. For example, consider the following interfaces/interlayers: (i) the frictional, sliding, inter-ply surfaces within a soft armour pack, and also between the pack and the carrier, (ii) the air-gaps that may develop within the soft armour pack, (iii) the interconnecting space between the soft armour pack and the hard armour plate, (iv) the nature of the interfaces between adjacent plies of a multiplied backing laminate, even in a highly compressed Ultra High Molecular Weight Polyethylene (UHMWPE) variant, (v) the interlayer between the ceramic and its substrate, within a HAP, and (vi) the geometrical fit between two hard armour plates within a stacked body armour system. This paper will provide a User-friendly overview of all such interfaces and provide unique guidance as to their criticality and influence.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号