首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Damage of multi-layer spaced metallic target plates impacted by radial layered PELE
Institution:School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Abstract:Three different kinds of PELE (the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates. The impact velocities of the projectiles were measured by the velocity measuring system. The damage degree and process of each layer of target plate impacted by the three kinds of projectiles were analyzed. The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates. For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket, the diameters of holes on the second layer of plates are 3.36 times and 3.76 times of the diameter of the projectile, respectively. For radial layered PELE with W/Zr-based amorphous composite jacket, due to the large number of tungsten wires dispersed after the impact, the diameter of the holes on the four-layer spaced plates can reach 2.4 times, 3.04 times, 5.36 times and 2.68 times of the diameter of the projectile. Besides, the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate. Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE, the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE. The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material, and formed a large area of ablation marks on the last three target plates.
Keywords:PELE (the penetrator with lateral efficiency)  Multi-layer spaced metal target plates  Impact  Damage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号