首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a large‐scale network design model for the outbound supply chain of an automotive company that considers transportation mode selection (road vs. rail) and explicitly models the relationship between lead times and the volume of flow through the nodes of the network. We formulate the problem as a nonlinear zero‐one integer program, reformulate it to obtain a linear integer model, and develop a Lagrangian heuristic for its solution that gives near‐optimal results in reasonable time. We also present scenario analyses that examine the behavior of the supply chain under different parameter settings and the performance of the solution procedures under different experimental conditions. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

2.
We study a workforce planning and scheduling problem in which weekly tours of agents must be designed. Our motivation for this study comes from a call center application where agents serve customers in response to incoming phone calls. Similar to many other applications in the services industry, the demand for service in call centers varies significantly within a day and among days of the week. In our model, a weekly tour of an agent consists of five daily shifts and two days off, where daily shifts within a tour may be different from each other. The starting times of any two consecutive shifts, however, may not differ by more than a specified bound. Furthermore, a tour must also satisfy constraints regarding the days off, for example, it may be required that one of the days off is on a weekend day. The objective is to determine a collection of weekly tours that satisfy the demand for agents' services, while minimizing the total labor cost of the workforce. We describe an integer programming model where a weekly tour is obtained by combining seven daily shift scheduling models and days‐off constraints in a network flow framework. The model is flexible and can accommodate different daily models with varying levels of detail. It readily handles different days‐off rules and constraints regarding start time differentials in consecutive days. Computational results are also presented. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 607–624, 2001.  相似文献   

3.
This paper describes a procedure for determining if constrained transportation problems (i.e., transportation problems with additional linear constraints) can be transformed into equivalent pure transportation problems by a linear transformation involving the node constraints and the extra constraints. Our results extend procedures for problems in which the extra constraints consist of bounding certain partial sums of variables.  相似文献   

4.
The quay crane scheduling problem consists of determining a sequence of unloading and loading movements for cranes assigned to a vessel in order to minimize the vessel completion time as well as the crane idle times. Idle times originate from interferences between cranes since these roll on the same rails and a minimum safety distance must be maintained between them. The productivity of container terminals is often measured in terms of the time necessary to load and unload vessels by quay cranes, which are the most important and expensive equipment used in ports. We formulate the quay crane scheduling problem as a vehicle routing problem with side constraints, including precedence relationships between vertices. For small size instances our formulation can be solved by CPLEX. For larger ones we have developed a branch‐and‐cut algorithm incorporating several families of valid inequalities, which exploit the precedence constraints between vertices. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

5.
基于约束满足的多目标对地观测卫星成像调度   总被引:1,自引:0,他引:1       下载免费PDF全文
EOS(对地观测卫星)成像调度需要根据用户提出的成像任务需求确定卫星成像序列,是一个复杂的组合优化问题。考虑到成像侧视约束条件,建立EOS成像调度的多目标有向无环约束图模型。在此模型的基础上提出了基于SPEA2(strength pareto evolutionary algorithm 2)的多目标成像调度算法,采用约束控制技术设计遗传算子处理成像约束。经过三个实际的多目标成像调度问题测试,表明该算法可以有效地解决EOS成像调度问题。  相似文献   

6.
Logistics scheduling refers to the problems where the decisions of job scheduling and transportation are integrated in a single framework. In this paper, we discuss a logistics scheduling model where the raw material is delivered to the shop in batches. By making the batching and scheduling decisions simultaneously, the total inventory and batch setup cost can be reduced. We study different models on this issue, present complexity analysis and optimal algorithms, and conduct computational experiments. Some managerial insights are observed. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

7.
This paper investigates certain issues of coefficient sensitivity in generalized network problems when such problems have small gains or losses. In these instances, it might be computationally advantageous to temporarily ignore these gains or losses and solve the resultant “pure” network problem. Subsequently, the optimal solution to the pure problem could be used to derive the optimal solution to the original generalized network problem. In this paper we focus on generalized transportation problems and consider the following question: Given an optimal solution to the pure transportation problem, under what conditions will the optimal solution to the original generalized transportation problem have the same basic variables? We study special cases of the generalized transportation problem in terms of convexity with respect to a basis. For the special case when all gains or losses are identical, we show that convexity holds. We use this result to determine conditions on the magnitude of the gains or losses such that the optimal solutions to both the generalized transportation problem and the associated pure transportation problem have the same basic variables. For more general cases, we establish sufficient conditions for convexity and feasibility. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 666–685, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10034  相似文献   

8.
9.
The dynamic transportation problem is a transportation problem over time. That is, a problem of selecting at each instant of time t, the optimal flow of commodities from various sources to various sinks in a given network so as to minimize the total cost of transportation subject to some supply and demand constraints. While the earliest formulation of the problem dates back to 1958 as a problem of finding the maximal flow through a dynamic network in a given time, the problem has received wider attention only in the last ten years. During these years, the problem has been tackled by network techniques, linear programming, dynamic programming, combinational methods, nonlinear programming and finally, the optimal control theory. This paper is an up-to-date survey of the various analyses of the problem along with a critical discussion, comparison, and extensions of various formulations and techniques used. The survey concludes with a number of important suggestions for future work.  相似文献   

10.
Recent efforts in the field of dynamic programming have explored the feasibility of solving certain classes of integer programming problems by recursive algorithms. Special recursive algorithms have been shown to be particularly effective for problems possessing a 0–1 attribute matrix displaying the “nesting property” studied by, Ignall and Veinott in inventory theory and by Glover in network flows. This paper extends the class of problem structures that has been shown amenable to recursive exploitation by providing an efficient dynamic programming approach for a general transportation scheduling problem. In particular, we provide alternative formulations lor the scheduling problem and show how the most general of these formulations can be readily solved vis a vis recursive techniques.  相似文献   

11.
The problems of labor staffing and scheduling have received substantial attention in the literature. We introduce two new models of the labor staffing and scheduling problems that avoid the limitations of existing models. Collectively, the models have five important attributes. First, both models ensure the delivery of a minimally acceptable level of service in all periods. Second, one model can identify the least expensive way of delivering a specified aggregate level of customer service (the labor staffing problem and a form of labor scheduling problem). Third, the other model can identify the highest level of service attainable with a fixed amount of labor (the other form of the labor scheduling problem). Fourth, the models enable managers to identify the pareto relationship between labor costs and customer service. Fifth, the models allow a degree of control over service levels that is unattainable with existing models. Because of these attributes, which existing models largely do not possess, we expect these models to have broad applicability in a wide range of organizations operating in both competitive and noncompetitive environments. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 719–740, 1997  相似文献   

12.
We derive sufficient conditions which, when satisfied, guarantee that an optimal solution for a single‐machine scheduling problem is also optimal for the corresponding proportionate flow shop scheduling problem. We then utilize these sufficient conditions to show the solvability in polynomial time of numerous proportionate flow shop scheduling problems with fixed job processing times, position‐dependent job processing times, controllable job processing times, and also problems with job rejection. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 595–603, 2015  相似文献   

13.
The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fast as possible,dynamic maintenance scheduling models with subject taken into account were built on the basis of analysis the feature of maintenance task.Maintenance task scheduling problem is very complicated.So it is decomposed into two sub-problems:static maintenance task scheduling and dynamic maintenance task scheduling problem with subject taken into account.Corresponding mathematic models were built to these sub-problems and their solutions were proposed.Dynamic maintenance task scheduling with subject taken into account is on the basis of static maintenance task scheduling.With the task changing in battlefield,dynamic task scheduling can be realized by repeatedly call of static maintenance task scheduling with subject taken into account.The experimented results show that dynamic maintenance task scheduling method with maintenance subject taken into account is valid.  相似文献   

14.
We consider a class of network flow problems with pure quadratic costs and demonstrate that the conjugate gradient technique is highly effective for large-scale versions. It is shown that finding a saddle point for the Lagrangian of an m constraint, n variable network problem requires only the solution of an unconstrained quadratic programming problem with only m variables. It is demonstrated that the number of iterations for the conjugate gradient algorithm is substantially smaller than the number of variables or constraints in the (primal) network problem. Forty quadratic minimum-cost flow problems of various sizes up to 100 nodes are solved. Solution time for the largest problems (4,950 variables and 99 linear constraints) averaged 4 seconds on the CBC Cyber 70 Model 72 computer.  相似文献   

15.
Logistical planning problems are complicated in practice because planners have to deal with the challenges of demand planning and supply replenishment, while taking into account the issues of (i) inventory perishability and storage charges, (ii) management of backlog and/or lost sales, and (iii) cost saving opportunities due to economies of scale in order replenishment and transportation. It is therefore not surprising that many logistical planning problems are computationally difficult, and finding a good solution to these problems necessitates the development of many ad hoc algorithmic procedures to address various features of the planning problems. In this article, we identify simple conditions and structural properties associated with these logistical planning problems in which the warehouse is managed as a cross‐docking facility. Despite the nonlinear cost structures in the problems, we show that a solution that is within ε‐optimality can be obtained by solving a related piece‐wise linear concave cost multi‐commodity network flow problem. An immediate consequence of this result is that certain classes of logistical planning problems can be approximated by a factor of (1 + ε) in polynomial time. This significantly improves upon the results found in literature for these classes of problems. We also show that the piece‐wise linear concave cost network flow problem can be approximated to within a logarithmic factor via a large scale linear programming relaxation. We use polymatroidal constraints to capture the piece‐wise concavity feature of the cost functions. This gives rise to a unified and generic LP‐based approach for a large class of complicated logistical planning problems. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

16.
In this paper we present a new formulation of the quadratic assignment problem. This is done by transforming the quadratic objective function into a linear objective function by introducing a number of new variables and constraints. The resulting problem is a 0-1 linear integer program with a highly specialized structure. This permits the use of the partitioning scheme of Benders where only the original variables need be considered. The algorithm described thus iterates between two problems. The master problem is a pure 0-1 integer program, and the subproblem is a transportation problem whose optimal solution is shown to be readily available from the master problem in closed form. Computational experience on problems available in the literature is provided.  相似文献   

17.
Large complicated projects with interdependent activities can be described by project networks. Arcs represent activities, nodes represent events, and the network's structure defines the relation between activities and events. A schedule associates an occurrence time with each event: the project can be scheduled in several different ways. We assume that a known amount of cash changes hands at each event. Given any schedule the present value of all cash transactions can be calculated. The payment scheduling problem looks for a schedule that maximizes the present value of all transactions. This problem was first introduced by Russell [2]; it is a nonlinear program with linear constraints and a nonconcave objective. This paper demonstrates that the payment scheduling problem can be transformed into an equivalent linear program. The linear program has the structure of a weighted distribution problem and an efficient procedure is presented for its solution. The algorithm requires the solution of triangular systems of equations with all matrix coefficients equal to ± or 0.  相似文献   

18.
This paper considers a new class of scheduling problems arising in logistics systems in which two different transportation modes are available at the stage of product delivery. The mode with the shorter transportation time charges a higher cost. Each job ordered by the customer is first processed in the manufacturing facility and then transported to the customer. There is a due date for each job to arrive to the customer. Our approach integrates the machine scheduling problem in the manufacturing stage with the transportation mode selection problem in the delivery stage to achieve the global maximum benefit. In addition to studying the NP‐hard special case in which no tardy job is allowed, we consider in detail the problem when minimizing the sum of the total transportation cost and the total weighted tardiness cost is the objective. We provide a branch and bound algorithm with two different lower bounds. The effectiveness of the two lower bounds is discussed and compared. We also provide a mathematical model that is solvable by CPLEX. Computational results show that our branch and bound algorithm is more efficient than CPLEX. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

19.
Linear programming problems with upper bounded variables can be solved by regular simplex method by considering upper bounding constraints as explicit constraints of the problem. However, more efficient methods exist which consider these upper bound constraints implicitly. When parametric analysis for problems with upper bounds is to be carried out, one can use the regular parameter analysis by considering the upper bound constraints explicitly. This paper develops formulas for parametric analysis where upper bound constraints are used implicitly, thus reducing the size of the basic matrix.  相似文献   

20.
In this article we address the problem of scheduling a single project network with both precedence and resource constraints through the use of a local search technique. We choose a solution definition which guarantees precedence feasibility, allowing the procedure to focus on overcoming resource infeasibility. We use the 110-problem data set of Patterson to test our procedure. Our results indicate a significant improvement over the best heuristic results reported to date for these problems (Bell and Han [1]). Two major advantages of the local search algorithm are its ability to handle arbitrary objective functions and constraints and its effectiveness over a wide range of problem sizes. We present a problem example with an objective function and resource constraints which include nonlinear and non-continuous components, which are easily considered by the procedure. The results of our algorithm are significantly better than random solutions to the problem. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号