首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study linear programming models that contain transportation constraints in their formulation. Typically, these models have a multistage nature and the transportation constraints together with the associated flow variables are used to achieve consistency between consecutive stages. We describe how to reformulate these models by projecting out the flow variables. The reformulation can be more desirable since it has fewer variables and can be solved faster. We apply these ideas to reformulate two well‐known workforce staffing and scheduling problems: the shift scheduling problem and the tour scheduling problem. We also present computational results. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

2.
To solve linear fixed charge problems with Murty's vertex ranking algorithm, one uses a simplex algorithm and a procedure to determine the vertices adjacent to a given vertex. In solving fixed charge transportation problems, the simplex algorithm simplifies to the stepping-stone algorithm. To find adjacent vertices on transportation polytopes, we present a procedure which is a simplification of a more general procedure for arbitrary polytopes.  相似文献   

3.
This paper gives a new organization of the theoretical results of the Generalized Transportation Problem with capacity constraints. A graph-theoretic approach is utilized to define the basis as a one-forest consisting of one-trees (a tree with an extra edge). Algorithmic development of the pivot-step is presented by the representation of a two-tree (a tree with two extra edges). Constructive procedures and proofs leading to an efficient computer code are provided. The basic definition of an operator theory which leads to the discussion of various operators is also given. In later papers we will present additional results on the operator theory for the generalized transportation problem based on the results in the present paper.  相似文献   

4.
The dynamic transportation problem is a transportation problem over time. That is, a problem of selecting at each instant of time t, the optimal flow of commodities from various sources to various sinks in a given network so as to minimize the total cost of transportation subject to some supply and demand constraints. While the earliest formulation of the problem dates back to 1958 as a problem of finding the maximal flow through a dynamic network in a given time, the problem has received wider attention only in the last ten years. During these years, the problem has been tackled by network techniques, linear programming, dynamic programming, combinational methods, nonlinear programming and finally, the optimal control theory. This paper is an up-to-date survey of the various analyses of the problem along with a critical discussion, comparison, and extensions of various formulations and techniques used. The survey concludes with a number of important suggestions for future work.  相似文献   

5.
A stochastic production-maximizing problem with transportation constraints is considered where the production rates, Rij, of man i — job j combinations are random variables rather than constants. It is shown that for the family of Weibull distributions (of which the Exponential is a special case) with scale parameters λij and shape parameter β, the plan that maximizes the expected rate of the entire line is obtained by solving a deterministic fixed charge transportation problem with no linear costs and with “set-up” cost matrix ‖λij‖.  相似文献   

6.
This article addresses bottleneck linear programming problems and in particular capacitated and constrained bottleneck transportation problems. A pseudopricing procedure based on the poly-ω procedure is used to facilitate the primal simplex procedure. This process allows the recent computational developments such as the Extended Threaded Index Method to be applied to bottleneck transportation problems. The impact on problem solution times is illustrated by computational testing and comparison with other current methods.  相似文献   

7.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   

8.
This paper investigates certain issues of coefficient sensitivity in generalized network problems when such problems have small gains or losses. In these instances, it might be computationally advantageous to temporarily ignore these gains or losses and solve the resultant “pure” network problem. Subsequently, the optimal solution to the pure problem could be used to derive the optimal solution to the original generalized network problem. In this paper we focus on generalized transportation problems and consider the following question: Given an optimal solution to the pure transportation problem, under what conditions will the optimal solution to the original generalized transportation problem have the same basic variables? We study special cases of the generalized transportation problem in terms of convexity with respect to a basis. For the special case when all gains or losses are identical, we show that convexity holds. We use this result to determine conditions on the magnitude of the gains or losses such that the optimal solutions to both the generalized transportation problem and the associated pure transportation problem have the same basic variables. For more general cases, we establish sufficient conditions for convexity and feasibility. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 666–685, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10034  相似文献   

9.
This paper considers the classical finite linear transportation Problem (I) and two relaxations, (II) and (III), of it based on papers by Kantorovich and Rubinstein, and Kretschmer. Pseudo-metric type conditions on the cost matrix are given under which Problems (I) and (II) have common optimal value, and a proper subset of these conditions is sufficient for Problems (II) and (III) to have common optimal value. The relationships between the three problems provide a proof of Kantorovich's original characterization of optimal solutions to the standard transportation problem having as many origins as destinations. The result are extended to problems having cost matrices which are nonnegative row-column equivalent.  相似文献   

10.
This paper studies the one-period, general network distribution problem with linear costs. The approach is to decompose the problem into a transportation problem that represents a stocking decision, and into decoupled newsboy problems that represent the realization of demand with the usual associated holding and shortage costs. This approach leads to a characterization of optimal policies in terms of the dual of the transportation problem. This method is not directly suitable for the solution for large problems, but the exact solution for small problems can be obtained. For the numerical solutions of large problems, the problem has been formulated as a linear program with column generation. This latter approach is quite robust in the sense that it is easily extended to incorporate capacity constraints and the multiproduct case.  相似文献   

11.
A cutting plane method for solving concave minimization problems with linear constraints has been advanced by Tui. The principle behind this cutting plane has been applied to integer programming by Balas, Young, Glover, and others under the name of convexity cuts. This paper relates the question of finiteness of Tui's method to the so-called generalized lattice point problem of mathematical programming and gives a sufficient condition for terminating Tui's method. The paper then presents several branch-and-bound algorithms for solving concave minimization problems with linear constraints with the Tui cut as the basis for the algorithm. Finally, some computational experience is reported for the fixed-charge transportation problem.  相似文献   

12.
A primal simplex procedure is developed to solve transportation problems with an arbitrary additional linear constraint. The approach is a specialization of the Double Reverse Method of Charnes and Cooper. Efficient procedures for pricing-out the basis, determining representations, and implementing the change of basis are presented. These procedures exploit the pure transportation substructure in such a manner that full advantage may be taken of the computational schemes and list structures used to store and update the basis in codifying the MODI method. Furthermore, the pricing-out and change-of-basis procedures are organized in a manner that permits the calculations for one to be utilized in the other. Computational results are presented which indicate that this method is at least 50 times faster than the state-of-the-art LP code, APEX-III. Methods for obtaining basic primal “feasible” starts and “good” feasible integer solutions are also presented.  相似文献   

13.
The bottleneck transportation problem can be stated as follows: A set of supplies and a set of demands are specified such that the total supply is equal to the total demand. There is a transportation time associated between each supply point and each demand point. It is required to find a feasible distribution (of the supplies) which minimizes the maximum transportaton time associated between a supply point and a demand point such that the distribution between the two points is positive. In addition, one may wish to find from among all optimal solutions to the bottleneck transportation problem, a solution which minimizes the total distribution that requires the maximum time Two algorithms are given for solving the above problems. One of them is a primal approach in the sense that improving fcasible solutions are obtained at each iteration. The other is a “threshold” algorithm which is found to be far superior computationally.  相似文献   

14.
A branch and bound algorithm is developed for a class of allocation problems in which some constraint coefficients depend on the values of certain of the decision variables. Were it not for these dependencies, the problems could be solved by linear programming. The algorithm is developed in terms of a strategic deployment problem in which it is desired to find a least-cost transportation fleet, subject to constraints on men/materiel requirements in the event of certain hypothesized contingencies. Among the transportation vehicles available for selection are aircraft which exhibit the characteristic that the amount of goods deliverable by an aircraft on a particular route in a given time period (called aircraft productivity and measured in kilotons/aircraft/month) depends on the ratio of type 1 to type 2 aircraft used on that particular route. A model is formulated in which these relationships are first approximated by piecewise linear functions. A branch and bound algorithm for solving the resultant nonlinear problem is then presented; the algorithm solves a sequence of linear programming problems. The algorithm is illustrated by a sample problem and comments concerning its practicality are made.  相似文献   

15.
A linear programming formulation is described that will permit the optimal assignment of transportation resources (vehicles) and movement requirements to a network consisting of a set of designated origins, ports of embarkation, enroute bases, ports of debarkation, and destinations to achieve a prescribed schedule of arrivals.  相似文献   

16.
An efficient auxiliary algorithm for solving transportation problems, based on a necessary but not sufficient condition for optimum, is presented.  相似文献   

17.
The pure fixed charge transportation problem (PFCTP) is a variation of the fixed charge transportation problem (FCTP) in which there are only fixed costs to be incurred when a route is opened. We present in this paper a direct search procedure using the LIFO decision rule for branching. This procedure is enhanced by the use of 0–1 knapsack problems which determine bounds on partial solutions. Computational results are presented and discussed.  相似文献   

18.
In this paper, we consider a variant of the classical transportation problem as well as of the bottleneck transportation problem, which we call the minimax transportation problem. The problem considered is to determine a feasible flow xij from a set of origins I to a set of destinations J for which max(i,j)εIxJ{cijxij} is minimum. In this paper, we develop a parametric algorithm and a primal-dual algorithm to solve this problem. The parametric algorithm solves a transportation problem with parametric upper bounds and the primal-dual algorithm solves a sequence of related maximum flow problems. The primal-dual algorithm is shown to be polynomially bounded. Numerical investigations with both the algorithms are described in detail. The primal-dual algorithm is found to be computationally superior to the parametric algorithm and it can solve problems up to 1000 origins, 1000 destinations and 10,000 arcs in less than 1 minute on a DEC 10 computer system. The optimum solution of the minimax transportation problem may be noninteger. We also suggest a polynomial algorithm to convert this solution into an integer optimum solution.  相似文献   

19.
This paper presents direct noniterative methods for solving such known problems as shoploading and aggregate scheduling. There is given a simple optimal rule for the shop-loading problem which is quite surprising. The crucial point in solving this problem is what not to assign rather than what to assign. The development of those methods was possible since the discussed problems can be converted into a special transportation model where the given cost coefficients cij assume a form cij = ui + uj.  相似文献   

20.
Among the many tools of the operations researcher is the transportation algorithm which has been used to solve a variety of problems ranging from shipping plans to plant location. An important variation of the basic transportation problem is the transportation problem with stochastic demand or stochastic supply. This paper presents a simple approximation technique which may be used as a starting solution for algorithms that determine exact solutions. The paper indicates that the approximation technique offered here is superior to a starting solution obtained by substituting expected demand for the random variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号