首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study linear programming models that contain transportation constraints in their formulation. Typically, these models have a multistage nature and the transportation constraints together with the associated flow variables are used to achieve consistency between consecutive stages. We describe how to reformulate these models by projecting out the flow variables. The reformulation can be more desirable since it has fewer variables and can be solved faster. We apply these ideas to reformulate two well‐known workforce staffing and scheduling problems: the shift scheduling problem and the tour scheduling problem. We also present computational results. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

2.
Among the many tools of the operations researcher is the transportation algorithm which has been used to solve a variety of problems ranging from shipping plans to plant location. An important variation of the basic transportation problem is the transportation problem with stochastic demand or stochastic supply. This paper presents a simple approximation technique which may be used as a starting solution for algorithms that determine exact solutions. The paper indicates that the approximation technique offered here is superior to a starting solution obtained by substituting expected demand for the random variables.  相似文献   

3.
This paper considers the classical finite linear transportation Problem (I) and two relaxations, (II) and (III), of it based on papers by Kantorovich and Rubinstein, and Kretschmer. Pseudo-metric type conditions on the cost matrix are given under which Problems (I) and (II) have common optimal value, and a proper subset of these conditions is sufficient for Problems (II) and (III) to have common optimal value. The relationships between the three problems provide a proof of Kantorovich's original characterization of optimal solutions to the standard transportation problem having as many origins as destinations. The result are extended to problems having cost matrices which are nonnegative row-column equivalent.  相似文献   

4.
一类带容量限制的运输问题   总被引:11,自引:2,他引:9  
考虑一类带容量限制的运输问题.采用构造辅助网络的方法,将运输网络中的每个配送中心均拆分成两个节点,构造出新弧,形成新的网络,把此类运输问题转换为最小费用流问题来解决.并在此基础上,考虑运输网络中配送中心的容量扩张问题.  相似文献   

5.
运输问题一般采用表上作业法来解决,考虑一类带配送中心的运输问题,若仍采用表上作业法,会使问题复杂化.文中采用一种构造辅助网络的方法:在运输网络中将每个配送中心均拆分成两个点,连接两点形成新弧,构造出新的网络,并给每条弧赋予参数,将此类运输问题转换为最小费用流模型来解决,可以使问题模型和运算简单化.在此基础上,考虑运输网络中配送中心和边的容量扩张问题.  相似文献   

6.
In this paper we present a new formulation of the quadratic assignment problem. This is done by transforming the quadratic objective function into a linear objective function by introducing a number of new variables and constraints. The resulting problem is a 0-1 linear integer program with a highly specialized structure. This permits the use of the partitioning scheme of Benders where only the original variables need be considered. The algorithm described thus iterates between two problems. The master problem is a pure 0-1 integer program, and the subproblem is a transportation problem whose optimal solution is shown to be readily available from the master problem in closed form. Computational experience on problems available in the literature is provided.  相似文献   

7.
We study a single batching machine scheduling problem with transportation and deterioration considerations arising from steel production. A set of jobs are transported, one at a time, by a vehicle from a holding area to the single batching machine. The machine can process several jobs simultaneously as a batch. The processing time of a job will increase if the duration from the time leaving the holding area to the start of its processing exceeds a given threshold. The time needed to process a batch is the longest of the job processing times in the batch. The problem is to determine the job sequence for transportation and the job batching for processing so as to minimize the makespan and the number of batches. We study four variations (P1, P2, P3, P4) of the problem with different treatments of the two criteria. We prove that all the four variations are strongly NP‐hard and further develop polynomial time algorithms for their special cases. For each of the first three variations, we propose a heuristic algorithm and analyze its worst‐case performance. For P4, which is to find the Pareto frontier, we provide a heuristic algorithm and an exact algorithm based on branch and bound. Computational experiments show that all the heuristic algorithms perform well on randomly generated problem instances, and the exact algorithm for P4 can obtain Pareto optimal schedules for small‐scale instances. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 269–285, 2014  相似文献   

8.
A network with traffic between nodes is known. The links of the network can be designed either as two‐way links or as one‐way links in either direction. The problem is to find the best configuration of the network which minimizes total travel time for all users. Branch and bound optimal algorithms are practical only for small networks (up to 15 nodes). Effective simulated annealing and genetic algorithms are proposed for the solution of larger problems. Both the simulated annealing and the genetic algorithms propose innovative approaches. These innovative ideas can be used in the implementation of these heuristic algorithms for other problems as well. Additional tabu search iterations are applied on the best results obtained by these two procedures. The special genetic algorithm was found to be the best for solving a set of test problems. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 449–463, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10026  相似文献   

9.
In this article we present three properties that will improve the performance of branch-and-bound algorithms for fixed-cost transportation problems. By applying Lagrangian relaxation we show that one can develop stronger up and down penalties than those traditionally used and also develop a strengthened penalty for nonbasic variables. We also show that it is possible to “look ahead” of a particular node and determine the solution at the next node without actually calculating it. We present computational evidence by comparing our developments with existing procedures.  相似文献   

10.
We consider a class of network flow problems with pure quadratic costs and demonstrate that the conjugate gradient technique is highly effective for large-scale versions. It is shown that finding a saddle point for the Lagrangian of an m constraint, n variable network problem requires only the solution of an unconstrained quadratic programming problem with only m variables. It is demonstrated that the number of iterations for the conjugate gradient algorithm is substantially smaller than the number of variables or constraints in the (primal) network problem. Forty quadratic minimum-cost flow problems of various sizes up to 100 nodes are solved. Solution time for the largest problems (4,950 variables and 99 linear constraints) averaged 4 seconds on the CBC Cyber 70 Model 72 computer.  相似文献   

11.
This article addresses bottleneck linear programming problems and in particular capacitated and constrained bottleneck transportation problems. A pseudopricing procedure based on the poly-ω procedure is used to facilitate the primal simplex procedure. This process allows the recent computational developments such as the Extended Threaded Index Method to be applied to bottleneck transportation problems. The impact on problem solution times is illustrated by computational testing and comparison with other current methods.  相似文献   

12.
In this paper, we explore trade‐offs between operational flexibility and operational complexity in periodic distribution problems. We consider the gains from operational flexibility in terms of vehicle routing costs and customer service benefits, as well as the costs of operational complexity in terms of modeling, solution methods, and implementation challenges for drivers and customers. The period vehicle routing problem (PVRP) is a variation of the classic vehicle routing problem in which delivery routes are constructed for a period of time; the PVRP with service choice (PVRP‐SC) extends the PVRP to allow service (visit) frequency to become a decision of the model. For the periodic distribution problems represented by PVRP and PVRP‐SC, we introduce operational flexibility levers and a set of quantitative measures to evaluate the trade‐offs between flexibility and complexity. We develop a Tabu Search heuristic to incorporate a range of operational flexibility options. We analyze the potential value and the increased operational complexity of the flexibility levers. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
We consider a robust shortest path problem when the cost coefficient is the product of two uncertain factors. We first show that the robust problem can be solved in polynomial time by a dual‐variable enumeration with shortest path problems as subproblems. We also propose a path enumeration approach using a K ‐shortest paths finding algorithm that may be efficient in many real cases. An application in hazardous materials transportation is discussed, and the solution methods are illustrated by numerical examples. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

14.
A paradox arises when a transportation problem admits to a total cost solution which is lower than the optimum and is attainable by shipping larger quantities of goods over the same routes that were previously designated as optimal. That is, falling total costs are present in moving to the greater shipment quantities. Necessary conditions for this to occur are established and an algorithm for solving this expanded transportation problem is supplied.  相似文献   

15.
This article describes a polynomial transformation for a class of unit‐demand vehicle routing problems, named node‐balanced routing problems (BRP), where the number of nodes on each route is restricted to be in an interval such that the workload across the routes is balanced. The transformation is general in that it can be applied to single or multiple depot, homogeneous or heterogeneous fleet BRPs, and any combination thereof. At the heart of the procedure lies transforming the BRP into a generalized traveling salesman problem (TSP), which can then be transformed into a TSP. The transformed graph exhibits special properties which can be exploited to significantly reduce the number of arcs, and used to construct a formulation for the resulting TSP that amounts to no more than that of a constrained assignment problem. Computational results on a number of instances are presented. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 370–387, 2015  相似文献   

16.
In hinterland container transportation the use of barges is getting more and more important. We propose a real‐life operational planning problem model from an inland terminal operating company, in which the number of containers shipped per barge is maximized and the number of terminals visited per barge is minimized. This problem is solved with an integer linear program (ILP), yielding strong cost reductions, about 20%, compared to the method used currently in practice. Besides, we develop a heuristic that solves the ILP in two stages. First, it decides for each barge which terminals to visit and second it assigns containers to the barges. This heuristic produces almost always optimal solutions and otherwise near‐optimal solutions. Moreover, the heuristic runs much faster than the ILP, especially for large‐sized instances.  相似文献   

17.
Sensitivity analysis of the transportation problem is developed in a way which enables reducing the dimensionality of the associated tableau. This technique is used to reduce the dimensionality of a transportation problem whose origin requirements are relatively small at the majority of origins. A long transportation problem, for which efficient solution procedures exist, results. A second application relates to the location-allocation problem. Reducing the dimensionality of such a problem, accompanied by the partial determination of the optimal solution, should prove helpful in the quest for an analytic solution to the aforementioned problem. In the meantime, reducing dimensionality greatly decreases the effort involved in solution by trial and error. Examples of the two applications are provided.  相似文献   

18.
We consider the coordination problem between a vendor and a buyer operating under generalized replenishment costs that include fixed costs as well as stepwise freight costs. We study the stochastic demand, single‐period setting where the buyer must decide on the order quantity to satisfy random demand for a single item with a short product life cycle. The full order for the cycle is placed before the cycle begins and no additional orders are accepted by the vendor. Due to the nonrecurring nature of the problem, the vendor's replenishment quantity is determined by the buyer's order quantity. Consequently, by using an appropriate pricing schedule to influence the buyer's ordering behavior, there is an opportunity for the vendor to achieve substantial savings from transportation expenses, which are represented in the generalized replenishment cost function. For the problem of interest, we prove that the vendor's expected profit is not increasing in buyer's order quantity. Therefore, unlike the earlier work in the area, it is not necessarily profitable for the vendor to encourage larger order quantities. Using this nontraditional result, we demonstrate that the concept of economies of scale may or may not work by identifying the cases where the vendor can increase his/her profits either by increasing or decreasing the buyer's order quantity. We prove useful properties of the expected profit functions in the centralized and decentralized models of the problem, and we utilize these properties to develop alternative incentive schemes for win–win solutions. Our analysis allows us to quantify the value of coordination and, hence, to identify additional opportunities for the vendor to improve his/her profits by potentially turning a nonprofitable transaction into a profitable one through the use of an appropriate tariff schedule or a vendor‐managed delivery contract. We demonstrate that financial gain associated with these opportunities is truly tangible under a vendor‐managed delivery arrangement that potentially improves the centralized solution. Although we take the viewpoint of supply chain coordination and our goal is to provide insights about the effect of transportation considerations on the channel coordination objective and contractual agreements, the paper also contributes to the literature by analyzing and developing efficient approaches for solving the centralized problem with stepwise freight costs in the single‐period setting. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

19.
We present an algorithm for solving a specially structured nonlinear integer resource allocation problem. This problem was motivated by a capacity planning study done at a large Health Maintenance Organization in Texas. Specifically, we focus on a class of nonlinear resource allocation problems that involve the minimization of a convex function over one general convex constraint, a set of block diagonal convex constraints, and bounds on the integer variables. The continuous variable problem is also considered. The continuous problem is solved by taking advantage of the structure of the Karush‐Kuhn‐Tucker (KKT) conditions. This method for solving the continuous problem is then incorporated in a branch and bound algorithm to solve the integer problem. Various reoptimization results, multiplier bounding results, and heuristics are used to improve the efficiency of the algorithms. We show how the algorithms can be extended to obtain a globally optimal solution to the nonconvex version of the problem. We further show that the methods can be applied to problems in production planning and financial optimization. Extensive computational testing of the algorithms is reported for a variety of applications on continuous problems with up to 1,000,000 variables and integer problems with up to 1000 variables. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 770–792, 2003.  相似文献   

20.
In this article, we consider a multi‐product closed‐loop supply chain network design problem where we locate collection centers and remanufacturing facilities while coordinating the forward and reverse flows in the network so as to minimize the processing, transportation, and fixed location costs. The problem of interest is motivated by the practice of an original equipment manufacturer in the automotive industry that provides service parts for vehicle maintenance and repair. We provide an effective problem formulation that is amenable to efficient Benders reformulation and an exact solution approach. More specifically, we develop an efficient dual solution approach to generate strong Benders cuts, and, in addition to the classical single Benders cut approach, we propose three different approaches for adding multiple Benders cuts. These cuts are obtained via dual problem disaggregation based either on the forward and reverse flows, or the products, or both. We present computational results which illustrate the superior performance of the proposed solution methodology with multiple Benders cuts in comparison to the branch‐and‐cut approach as well as the traditional Benders decomposition approach with a single cut. In particular, we observe that the use of multiple Benders cuts generates stronger lower bounds and promotes faster convergence to optimality. We also observe that if the model parameters are such that the different costs are not balanced, but, rather, are biased towards one of the major cost categories (processing, transportation or fixed location costs), the time required to obtain the optimal solution decreases considerably when using the proposed solution methodology as well as the branch‐and‐cut approach. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号