首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Consider a binary, monotone system of n components. The assessment of the parameter vector, θ, of the joint distribution of the lifetimes of the components and hence of the reliability of the system is often difficult due to scarcity of data. It is therefore important to make use of all information in an efficient way. For instance, prior knowledge is often of importance and can indeed conveniently be incorporated by the Bayesian approach. It may also be important to continuously extract information from a system currently in operation. This may be useful both for decisions concerning the system in operation as well as for decisions improving the components or changing the design of similar new systems. As in Meilijson [12], life‐monitoring of some components and conditional life‐monitoring of some others is considered. In addition to data arising from this monitoring scheme, so‐called autopsy data are observed, if not censored. The probabilistic structure underlying this kind of data is described, and basic likelihood formulae are arrived at. A thorough discussion of an important aspect of this probabilistic structure, the inspection strategy, is given. Based on a version of this strategy a procedure for preventive system maintenance is developed and a detailed application to a network system presented. All the way a Bayesian approach to estimation of θ is applied. For the special case where components are conditionally independent given θ with exponentially distributed lifetimes it is shown that the weighted sum of products of generalized gamma distributions, as introduced in Gåsemyr and Natvig [7], is the conjugate prior for θ. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 551–577, 2001.  相似文献   

2.
One approach to evaluating system reliability is the use of system based component test plans. Such plans have numerous advantages over complete system level tests, primarily in terms of time and cost savings. This paper considers one of the two basic building blocks of many complex systems, namely a system of n parallel components, and develops minimum cost component test plans for evaluating the reliability of such a system when the component reliabilities are known to be high. Two different decision rules are considered and the corresponding optimization problems are formulated and solved using techniques from mathematical programming. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44 : 401–418, 1997  相似文献   

3.
A system reliability is often evaluated by individual tests of components that constitute the system. These component test plans have advantages over complete system based tests in terms of time and cost. In this paper, we consider the series system with n components, where the lifetime of the i‐th component follows exponential distribution with parameter λi. Assuming test costs for the components are different, we develop an efficient algorithm to design a two‐stage component test plan that satisfies the usual probability requirements on the system reliability and in addition minimizes the maximum expected cost. For the case of prior information in the form of upper bounds on λi's, we use the genetic algorithm to solve the associated optimization problems which are otherwise difficult to solve using mathematical programming techniques. The two‐stage component test plans are cost effective compared to single‐stage plans developed by Rajgopal and Mazumdar. We demonstrate through several numerical examples that our approach has the potential to reduce the overall testing costs significantly. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 95–116, 2002; DOI 10.1002/nav.1051  相似文献   

4.
5.
A 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system consists of m × n components, and fails if and only if k or more components fail in an r × s submatrix. This system can be treated as a reliability model for TFT liquid crystal displays, wireless communication networks, etc. Although an effective method has been developed for evaluating the exact system reliability of small or medium‐sized systems, that method needs extremely high computing time and memory capacity when applied to larger systems. Therefore, developing upper and lower bounds and accurate approximations for system reliability is useful for large systems. In this paper, first, we propose new upper and lower bounds for the reliability of a 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system. Secondly, we propose two limit theorems for that system. With these theorems we can obtain accurate approximations for system reliabilities when the system is large and component reliabilities are close to one. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

6.
The bivariate negative binomial distribution of Mitchell and Paulson [17] for the case b = c = 0 is shown to be equivalent to the accident proneness model of Edwards and Gurland [4] and Subrahmaniam [19,20]. The diagonal series expansion of its joint probability function is then derived. Two other formulations of this distribution are also considered: (i) as a mixture model, which showed how it arises as the discrete analogue to the Wicksell-Kibble bivariate gamma distribution, and (ii) as a consequence of the linear birth-and-death process with immigration.  相似文献   

7.
Consider a system consisting of n separately maintained independent components where the components alternate between intervals in which they are “up” and in which they are “down”. When the ith component goes up [down] then, independent of the past, it remains up [down] for a random length of time, having distribution Fi[Gi], and then goes down [up]. We say that component i is failed at time t if it has been “down” at all time points s ?[t-A.t]: otherwise it is said to be working. Thus, a component is failed if it is down and has been down for the previous A time units. Assuming that all components initially start “up,” let T denote the first time they are all failed, at which point we say the system is failed. We obtain the moment-generating function of T when n = l, for general F and G, thus generalizing previous results which assumed that at least one of these distributions be exponential. In addition, we present a condition under which T is an NBU (new better than used) random variable. Finally we assume that all the up and down distributions Fi and Gi i = l,….n, are exponential, and we obtain an exact expression for E(T) for general n; in addition we obtain bounds for all higher moments of T by showing that T is NBU.  相似文献   

8.
This paper develops bounds on the uncertainties in system availabilities or reliabilities which have been computed from structural (series, parallel, etc.) relations among uncertain subsystem availabilities or reliabilities. It is assumed that the highly available (reliable) subsystems have been tested or simulated to determine their unavailabilities (unreliabilities) to within some small percentages of uncertainty. It is shown that series, parallel and r out of n structures which are nominally highly available will have unavailability uncertainties whose percentages errors are of the same order as the subsystem uncertainties. Thus overall system analysis errors, even for large systems, are of the same order of magnitude as the uncertainties in the component probabilities. Both systematic (bias type) uncertainties and independent random uncertainties are considered.  相似文献   

9.
In system reliability analysis, for an n ‐component system, the estimation of the performance of the components in the system is not straightforward in practice, especially when the components are dependent. Here, by assuming the n components in the system to be identically distributed with a common distribution belonging to a scale‐family and the dependence structure between the components being known, we discuss the estimation of the lifetime distributions of the components in the system based on the lifetimes of systems with the same structure. We develop a general framework for inference on the scale parameter of the component lifetime distribution. Specifically, the method of moments estimator (MME) and the maximum likelihood estimator (MLE) are derived for the scale parameter, and the conditions for the existence of the MLE are also discussed. The asymptotic confidence intervals for the scale parameter are also developed based on the MME and the MLE. General simulation procedures for the system lifetime under this model are described. Finally, some examples of two‐ and three‐component systems are presented to illustrate all the inferential procedures developed here. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

10.
We present probabilistic proofs for the following two facts: (i) A k out of n system of i.i.d (independent identically distributed). IFR (increasing failure rate) components has an IFR life distribution. (ii) A compound Poisson process with nonnegative i.i.d jumps with PF2 distribution is IFR.  相似文献   

11.
Suppose that some components are initially operated in a certain condition and then switched to operating in a different condition. Working hours of the components in condition 1 and condition 2 are respectively observed. Of interest is the lifetime distribution F of the component in the second condition only, i.e., the distribution without the prior exposure to the first condition. In this paper, we propose a method to transform the lifetime obtained in condition 1 to an equivalent lifetime in condition 2 and then use the transformed data to estimate F. Both parametric and nonparametric approaches each with complete and censored data are discussed. Numerical studies are presented to investigate the performance of the method. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 521–530, 2000  相似文献   

12.
We describe a decision process for establishing the threshold reliabilities for components of naval major-caliber ammunition. We present a measure of reliability performance, called ef*, which relates directly to the weapons system's performance in a naval gunfire support environment. We use a simulation model to establish this relationship, a regression metamodel to estimate its parameters, and a simple decision process to specify component reliability thresholds which ensure that the ammunition is mission effective. We present this article as an example of the integration of discrete event dynamic system analysis within a decision process. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
We consider a system composed of k components, each of which is subject to failure if temperature is above a critical level. The failure of one component causes the failure of the system as a whole (a serially connected system). If zi is the critical temperature of the ith component then z* = min{zi: i = 1,2,…, k} is the critical level of the system. The components may be tested individually at different temperature levels, if the temperature is below the critical level the cost is $1, otherwise the test is destructive and the cost is m > 1 dollars. The purpose of this article is to construct, under a budgetary constraint, an efficient (in a minmax sense) testing procedure which will locate the critical level of the system with maximal accuracy.  相似文献   

14.
Following a review of the basic ideas in structural reliability, including signature‐based representation and preservation theorems for systems whose components have independent and identically distributed (i.i.d.) lifetimes, extensions that apply to the comparison of coherent systems of different sizes, and stochastic mixtures of them, are obtained. It is then shown that these results may be extended to vectors of exchangeable random lifetimes. In particular, for arbitrary systems of sizes m < n with exchangeable component lifetimes, it is shown that the distribution of an m‐component system's lifetime can be written as a mixture of the distributions of k‐out‐of‐n systems. When the system has n components, the vector of coefficients in this mixture representation is precisely the signature of the system defined in Samaniego, IEEE Trans Reliabil R–34 (1985) 69–72. These mixture representations are then used to obtain new stochastic ordering properties for coherent or mixed systems of different sizes. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

15.
The Markov analysis of reliability models frequently involves a partitioning of the state space into two or more subsets, each corresponding to a given degree of functionality of the system. A common partitioning is GB ∪ {o}, where G (good) and B (bad) stand, respectively, for fully and partially functional sets of system states; o denotes system failure. Visits to B may correspond to, for instance, reparable system downtimes, whereas o will stand for irrecoverable system failure. Let TG and NB stand, respectively, for the total time spent in G, and the number of visits to B, until system failure. Both TG and NB are familiar system performance measures with well-known cumulative distribution functions. In this article a closed-form expression is established for the probability Pr[TG <> t, NBn], a dependability measure with much intuitive appeal but which hitherto seems not to have been considered in the literature. It is based on a recent result on the joint distribution of sojourn times in subsets of the state space by a Markov process. The formula is explored numerically by the example of a power transmission reliability model. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
In this article, we study reliability properties of m‐consecutive‐k‐out‐of‐n: F systems with exchangeable components. We deduce exact formulae and recurrence relations for the signature of the system. Closed form expressions for the survival function and the lifetime distribution as a mixture of the distribution of order statistics are established as well. These representations facilitate the computation of several reliability characteristics of the system for a given exchangeable joint distribution or survival function. Finally, we provide signature‐based stochastic ordering results for the system's lifetime and investigate the IFR preservation property under the formulation of m‐consecutive‐k‐out‐of‐n: F systems. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

17.
The problem of computing reliability and availability and their associated confidence limits for multi-component systems has appeared often in the literature. This problem arises where some or all of the component reliabilities and availabilities are statistical estimates (random variables) from test and other data. The problem of computing confidence limits has generally been considered difficult and treated only on a case-by-case basis. This paper deals with Bayes confidence limits on reliability and availability for a more general class of systems than previously considered including, as special cases, series-parallel and standby systems applications. The posterior distributions obtained are exact in theory and their numerical evaluation is limited only by computing resources, data representation and round-off in calculations. This paper collects and generalizes previous results of the authors and others. The methods presented in this paper apply both to reliability and availability analysis. The conceptual development requires only that system reliability or availability be probabilities defined in terms acceptable for a particular application. The emphasis is on Bayes Analysis and the determination of the posterior distribution functions. Having these, the calculation of point estimates and confidence limits is routine. This paper includes several examples of estimating system reliability and confidence limits based on observed component test data. Also included is an example of the numerical procedure for computing Bayes confidence limits for the reliability of a system consisting of N failure independent components connected in series. Both an exact and a new approximate numerical procedure for computing point and interval estimates of reliability are presented. A comparison is made of the results obtained from the two procedures. It is shown that the approximation is entirely sufficient for most reliability engineering analysis.  相似文献   

18.
Measuring the relative importance of components in a mechanical system is useful for various purposes. In this article, we study Birnbaum and Barlow‐Proschan importance measures for two frequently studied system designs: linear consecutive k ‐out‐of‐ n and m ‐consecutive‐ k ‐out‐of‐ n systems. We obtain explicit expressions for the component importance measures for systems consisting of exchangeable components. We illustrate the results for a system whose components have a Lomax type lifetime distribution. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

19.
In multi-commodity inventory systems with variable setup costs, the mixed ordering policy assumes that commodities may be ordered either individually, or may be arbitrarily grouped for joint ordering. Thus, for a two-commodity system, commodity one or commodity two or commodities one and two may be ordered incurring respectively fixed order costs of K, K1, or K2, where max (K1, K2) ≤ K ≤ K1 + K2, This paper considers a two-commodity periodic review system. The stationary characteristics of the system are analyzed, and, for a special case, explicit solutions are obtained for the distribution of the stock levels at the beginning of the periods. In a numerical example, optimal policy variables are computed, and the mixed ordering policy is compared with individual and joint ordering policies.  相似文献   

20.
Consider a reliability system consisting of n components. The failures and the repair completions of the components can occur only at positive integer-valued times k ϵ N++ ϵ (1, 2, …). At any time k ϵ N++ each component can be in one of two states: up (i.e., working) or down (i.e., failed and in repair). The system state is also either up or down and it depends on the states of the components through a coherent structure function τ. In this article we formulate mathematically the above model and we derive some of its properties. In particular, we identify conditions under which the first failure times of two such systems can be stochastically ordered. A variety of special cases is used in order to illustrate the applications of the derived properties of the model. Some instances in which the times of first failure have the NBU (new better than used) property are pointed out. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号