首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider a fleet of vehicles comprised of K1 identical tankers and K2 identical nontankers (small aircraft). Tankers are capable of refueling other tankers as well as nontankers. The problem is to find that refueling sequence of the tankers that maximizes the range simultaneously attainable by all K2 nontankers. A recent paper established that the “unit refueling sequence,” comprised of one tanker refueling at each of K1 refueling operations, is optimal. The same paper also proffered the following conjecture for the case that the number of refueling operations is constrained to be less than the number of tankers: A nonincreasing refueling sequence is optimal. This article proves the conjecture.  相似文献   

2.
Mehrez, Stern, and Ronen have defined a vehicle refueling problem in which a fleet of vehicles travels on a round-trip, self-contained mission from a common origin, with the objective of maximizing the operational range of the fleet. They have defined a “pure refueling chain” strategy for transferring fuel between vehicles in the fleet, and have solved the problem in the special cases when all vehicles have the same fuel capacity or consumption rate. In this article we present algorithms for the general case, where vehicles have different capacities and consumption rates. Our approach is based on a new primal dual formulation of the problem. The exact algorithm was effective to find the optimal solution for a fleet size n ⩽13. For larger fleets, we present an approximation version of it, which very quickly found a solution within 1% of the maximum possible range for arbitrarily large (up to n = 200) fleets. We also show that a small number of the best vehicles can always reach almost the same range as a large fleet. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The focus of this research is on self-contained missions requiring round-trip vehicle travel from a common origin. For a single vehicle the maximal distance that can be reached without refueling is defined as its operational range. Operational range is a function of a vehicle's fuel capacity and fuel consumption characteristics. In order to increase a vehicle's range beyond its operational range replenishment from a secondary fuel source is necessary. In this article, the problem of maximizing the range of any single vehicle from a fleet of n vehicles is investigated. This is done for four types of fleet configurations: (1) identical vehicles, (2) vehicles with identical fuel consumption rates but different fuel capacities, (3) vehicles which have the same fuel capacity but different fuel consumption rates, and (4) vehicles with both different fuel capacities and different consumption rates. For each of the first three configurations the optimal refueling policy that provides the maximal range is determined for a sequential refueling chain strategy. In such a strategy the last vehicle to be refueled is the next vehicle to transfer its fuel. Several mathematical programming formulations are given and their solutions determined in closed form. One of the major conclusions is that for an identical fleet the range of the farthest vehicle can be increased by at most 50% more than the operational range of a single vehicle. Moreover, this limit is reached very quickly with small values of n. The performance of the identical fleet configuration is further investigated for a refueling strategy involving a multiple-transfer refueling chain, stochastic vehicle failures, finite refueling times, and prepositioned fleets. No simple refueling ordering rules were found for the most general case (configuration 4). In addition, the case of vehicles with different fuel capacities is investigated under a budget constraint. The analysis provides several benchmarks or bounds for which more realistic structures may be compared. Some of the more complex structures left for future study are described.  相似文献   

4.
Computerized Scheduling of Seagoing Tankers The tanker scheduling problem considered in this paper is that of the Defense Fuel Supply Center (DFSC) and the Military Sealift Command (MSC) in the worldwide distribution of bulk petroleum products. Routes and cargoes which meet delivery schedule dates for a multiplicity of product requirements at minimum cost are to be determined for a fleet of tankers. A general mathematical programming model is presented, and then a mixed integer model is developed which attempts to reflect the true scheduling task of DFSC and MSC as closely as possible. The problem is kept to within a workable size by the systematic construction of a set of tanker routes which does not contain many possible routes that can be judged unacceptable from practical considerations alone.  相似文献   

5.
In this journal in 1967. Szware presented an algorithm for the optimal routing of a common vehicle fleet between m sources and n sinks with p different types of commodities. The main premise of the formulation is that a truck may carry only one commodity at a time and must deliver the entire load to one demand area. This eliminates the problem of routing vehicles between sources or between sinks and limits the problem to the routing of loaded trucks between sources and sinks and empty trucks making the return trip. Szwarc considered only the transportation aspect of the problem (i. e., no intermediate points) and presented a very efficient algorithm for solution of the case he described. If the total supply is greater than the total demand, Szwarc shows that the problem is equivalent to a (mp + n) by (np + m) Hitchcock transportation problem. Digital computer codes for this algorithm require rapid access storage for a matrix of size (mp + n) by (np + m); therefore, computer storage required grows proportionally to p2. This paper offers an extension of his work to a more general form: a transshipment network with capacity constraints on all arcs and facilities. The problem is shown to be solvable directly by Fulkerson's out-of-kilter algorithm. Digital computer codes for this formulation require rapid access storage proportional to p instead of p2. Computational results indicate that, in addition to handling the extensions, the out-of-kilter algorithm is more efficient in the solution of the original problem when there is a mad, rate number of commodities and a computer of limited storage capacity.  相似文献   

6.
The two‐level problem studied in this article consists of optimizing the refueling costs of a fleet of locomotives over a railway network. The goal consists of determining: (1) the number of refueling trucks contracted for each yard (truck assignment problem denoted TAP) and (2) the refueling plan of each locomotive (fuel distribution problem denoted FDP). As the FDP can be solved efficiently with existing methods, the focus is put on the TAP only. In a first version of the problem (denoted (P1)), various linear costs (e.g., fuel, fixed cost associated with each refueling, weekly operating costs of trucks) have to be minimized while satisfying a set of constraints (e.g., limited capacities of the locomotives and the trucks). In contrast with the existing literature on this problem, two types of nonlinear cost components will also be considered, based on the following ideas: (1) if several trucks from the same fuel supplier are contracted for the same yard, the supplier is likely to propose discounted prices for that yard (Problem (P2)); (2) if a train stops too often on its route, a penalty is incurred, which represents the dissatisfaction of the clients (Problem (P3)). Even if exact methods based on a mixed integer linear program formulation are available for (P1), they are not appropriate anymore to tackle (P2) and (P3). Various methods are proposed for the TAP: a descent local search, a tabu search, and a learning tabu search (LTS). The latter is a new type of local search algorithm. It involves a learning process relying on a trail system, and it can be applied to any combinatorial optimization problem. Results are reported and discussed for a large set of instances (for (P1), (P2), and (P3)), and show the good performance of LTS. © 2014 Wiley Periodicals, Inc. 62:32–45, 2015  相似文献   

7.
The fleet warranty guarantees the purchaser of a large population of like items that the mean life of the fleet will meet or exceed some negotiated mean μL. If the mean life is less than μL, compensation may be given in terms of a number of free replacement parts R. The expected number of replacements E[R] is studied based upon how the mean life of items in the field is determined and on whether the sampling window starts at time t = 0 (ordinary renewal process) or at some arbitrarily large time w (equilibrium renewal process). Properties of E[R] are compared and examples are given. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
We investigate the problem of scheduling a fleet of vehicles to visit the customers located on a path to minimize some regular function of the visiting times of the customers. For the single‐vehicle problem, we prove that it is pseudopolynomially solvable for any minsum objective and polynomially solvable for any minmax objective. Also, we establish the NP‐hardness of minimizing the weighted number of tardy customers and the total weighted tardiness, and present polynomial algorithms for their special cases with a common due date. For the multivehicle problem involving n customers, we show that an optimal solution can be found by solving or O(n) single‐vehicle problems. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 61: 34–43, 2014  相似文献   

9.
This paper examines the (n, m) scheduling problem with n operations distributed among m machines. An algorithm for solving this problem is presented and, gives a good heuristic solution on a wide class of problems. Computational results are reported which demonstrate the efficiency of this approach.  相似文献   

10.
In a variety of industrial situations experimental outcomes are only record-breaking observations. The data available may be represented as X1, K1., X2, K2,…, where X1, X2,… are the successive minima and K1, K2, … are the number of trials needed to obtain new records. Samaniego and Whitaker [11, 12] discussed the problem of estimating the survival function in both parametric and nonparametric setups when the data consisted of record-breaking observations. In this article we derive nonparametric Bayes and empirical Bayes estimators of the survival function for such data under a Dirichlet process prior and squared error loss. Furthermore, under the assumptions that the process of observing random records can be replicated, the weak convergence of the Bayes estimator is studied as the number of replications grows large. The calculations involved are illustrated by adopting Proschan's [9] data on successive failure times of air conditioning units on Boeing aircraft, for our purpose. The nonparametric maximum likelihood estimators of the survival function for different choices of the prior are displayed for comparison purposes.  相似文献   

11.
This article concerns the location of a facility among n points where the points are serviced by “tours” taken from the facility. Tours include m points at a time and each group of m points may become active (may need a tour) with some known probability. Distances are assumed to be rectilinear. For m ≤ 3, it is proved that the objective function is separable in each dimension and an exact solution method is given that involves finding the median of numbers appropriately generated from the problem data. It is shown that the objective function becomes multimodal when some tours pass through four or more points. A bounded heuristic procedure is suggested for this latter case. This heuristic involves solving an auxiliary three-point tour location problem.  相似文献   

12.
In this article we consider a version of the vehicle-routing problem (VRP): A fleet of identical capacitated vehicles serves a system of one warehouse and N customers of two types dispersed in the plane. Customers may require deliveries from the warehouse, back hauls to the warehouse, or both. The objective is to design a set of routes of minimum total length to serve all customers, without violating the capacity restriction of the vehicles along the routes. The capacity restriction here, in contrast to the VRP without back hauls is complicated because amount of capacity used depends on the order the customers are visited along the routes. The problem is NP-hard. We develop a lower bound on the optimal total cost and a heuristic solution for the problem. The routes generated by the heuristic are such that the back-haul customers are served only after terminating service to the delivery customers. However, the heuristic is shown to converge to the optimal solution, under mild probabilistic conditions, as fast as N−0.5. The complexity of the heuristic, as well as the computation of the lower bound, is O(N3) if all customers have unit demand size and O(N3 log N) otherwise, independently of the demand sizes. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
T identical exponential lifetime components out of which G are initially functioning (and B are not) are to be allocated to N subsystems, which are connected either in parallel or in series. Subsystem i, i = 1,…, N, functions when at least Ki of its components function and the whole system is maintained by a single repairman. Component repair times are identical independent exponentials and repaired components are as good as new. The problem of the determination of the assembly plan that will maximize the system reliability at any (arbitrary) time instant t is solved when the component failure rate is sufficiently small. For the parallel configuration, the optimal assembly plan allocates as many components as possible to the subsystem with the smallest Ki and allocates functioning components to subsystems in increasing order of the Ki's. For the series configuration, the optimal assembly plan allocates both the surplus and the functioning components equally to all subsystems whenever possible, and when not possible it favors subsystems in decreasing order of the Ki's. The solution is interpreted in the context of the optimal allocation of processors and an initial number of jobs in a problem of routing time consuming jobs to parallel multiprocessor queues. © John Wiley & Sons, Inc. Naval Research Logistics 48: 732–746, 2001  相似文献   

14.
Extending Sastry's result on the uncapacitated two‐commodity network design problem, we completely characterize the optimal solution of the uncapacitated K‐commodity network design problem with zero flow costs for the case when K = 3. By solving a set of shortest‐path problems on related graphs, we show that the optimal solutions can be found in O(n3) time when K = 3, where n is the number of nodes in the network. The algorithm depends on identifying a list of “basic patterns”; the number of basic patterns grows exponentially with K. We also show that the uncapacitated K‐commodity network design problem can be solved in O(n3) time for general K if K is fixed; otherwise, the time for solving the problem is exponential. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

15.
In multi-commodity inventory systems with variable setup costs, the mixed ordering policy assumes that commodities may be ordered either individually, or may be arbitrarily grouped for joint ordering. Thus, for a two-commodity system, commodity one or commodity two or commodities one and two may be ordered incurring respectively fixed order costs of K, K1, or K2, where max (K1, K2) ≤ K ≤ K1 + K2, This paper considers a two-commodity periodic review system. The stationary characteristics of the system are analyzed, and, for a special case, explicit solutions are obtained for the distribution of the stock levels at the beginning of the periods. In a numerical example, optimal policy variables are computed, and the mixed ordering policy is compared with individual and joint ordering policies.  相似文献   

16.
An approximation for P(X2 + Y2 ≤ K2σ21) based on an unpublished result of Kleinecke is derived, where X and Y are independent normal variables having zero means and variances σ21 and σ22 and σ1 ≥ σ2. Also, we provide asymptotic expressions for the probabilities for large values of β = K2(1 - c2)/4c2 where c = σ21. These are illustrated by comparing with values tabulated by Harter [6]. Solution of K for specified P and c is also considered. The main point of this note is that simple and easily calculable approximations for P and K can be developed and there is no need for numerical evaluation of integrals.  相似文献   

17.
For a given set S of nonnegative integers the partitioning problem asks for a partition of S into two disjoint subsets S1 and S2 such that the sum of elements in S1 is equal to the sum of elements in S2. If additionally two elements (the kernels) r1, r2S are given which must not be assigned to the same set Si, we get the partitioning problem with kernels. For these NP‐complete problems the authors present two compound algorithms which consist both of three linear greedylike algorithms running independently. It is shown that the worst‐case performance of the heuristic for the ordinary partitioning problem is 12/11, while the second procedure for partitioning with kernels has a bound of 8/7. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 593–601, 2000  相似文献   

18.
The paper discusses mathematical properties of the well-known Bellman-Johnson 3 × n sequencing problem. Optimal rules for some special cases are developed. For the case min Bi ≥ maxAj we find an optimal sequence of the 2 × n problem for machines B and C and move one item to the front of the sequence to minimize (7); when min Bi ≥ max Cj we solve a 2 × n problem for machines A and B and move one item to the end of the optimal sequence so as to minimize (9). There is also given a sufficient optimality condition for a solution obtained by Johnson's approximate method. This explains why this method so often produces an optimal solution.  相似文献   

19.
Variations of Hale's channel assignment problem, the L(j, k)‐labeling problem and the radio labeling problem require the assignment of integers to the vertices of a graph G subject to various distance constraints. The λj,k‐number of G and the radio number of G are respectively the minimum span among all L(j, k)‐labelings, and the minimum span plus 1 of all radio labelings of G (defined in the Introduction). In this paper, we establish the λj,k‐number of ∏ K for pairwise relatively prime integers t1 < t2 < … < tq, t1 ≥ 2. We also show the existence of an infinite class of graphs G with radio number |V(G)| for any diameter d(G). © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

20.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号