首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The problem treated here involves a mixed fleet of vehicles comprising two types of vehicles: K1 tanker-type vehicles capable of refueling themselves and other vehicles, and K2 nontanker vehicles incapable of refueling. The two groups of vehicles have different fuel capacities as well as different fuel consumption rates. The problem is to find the tanker refueling sequence that maximizes the range attainable for the K2 nontankers. A tanker refueling sequence is a partition of the tankers into m subsets (2 ≤ mK1). A given sequence of the partition provides a realization of the number of tankers participating in each successive refueling operation. The problem is first formulated as a nonlinear mixed-integer program and reduced to a linear program for a fixed sequence which may be solved by a simple recursive procedure. It is proven that a “unit refueling sequence” composed of one tanker refueling at each of K1 refueling operations is optimal. In addition, the problem of designing the “minimum fleet” (minimum number of tankers) required for a given set of K2 nontankers to attain maximal range is resolved. Also studied are extensions to the problem with a constraint on the number of refueling operations, different nontanker recovery base geometry, and refueling on the return trip.  相似文献   

2.
The focus of this research is on self-contained missions requiring round-trip vehicle travel from a common origin. For a single vehicle the maximal distance that can be reached without refueling is defined as its operational range. Operational range is a function of a vehicle's fuel capacity and fuel consumption characteristics. In order to increase a vehicle's range beyond its operational range replenishment from a secondary fuel source is necessary. In this article, the problem of maximizing the range of any single vehicle from a fleet of n vehicles is investigated. This is done for four types of fleet configurations: (1) identical vehicles, (2) vehicles with identical fuel consumption rates but different fuel capacities, (3) vehicles which have the same fuel capacity but different fuel consumption rates, and (4) vehicles with both different fuel capacities and different consumption rates. For each of the first three configurations the optimal refueling policy that provides the maximal range is determined for a sequential refueling chain strategy. In such a strategy the last vehicle to be refueled is the next vehicle to transfer its fuel. Several mathematical programming formulations are given and their solutions determined in closed form. One of the major conclusions is that for an identical fleet the range of the farthest vehicle can be increased by at most 50% more than the operational range of a single vehicle. Moreover, this limit is reached very quickly with small values of n. The performance of the identical fleet configuration is further investigated for a refueling strategy involving a multiple-transfer refueling chain, stochastic vehicle failures, finite refueling times, and prepositioned fleets. No simple refueling ordering rules were found for the most general case (configuration 4). In addition, the case of vehicles with different fuel capacities is investigated under a budget constraint. The analysis provides several benchmarks or bounds for which more realistic structures may be compared. Some of the more complex structures left for future study are described.  相似文献   

3.
Fuel optimizers are decision models (software products) that are increasingly recognized as effective fuel management tools by U.S. truckload carriers. Using the latest price data of every truck stop, these models calculate the optimal fueling schedule for each route that indicates: (i) which truck stop(s) to use, and (ii) how much fuel to buy at the chosen truck stop(s) to minimize the refueling cost. In the current form, however, these models minimize only the fuel cost, and ignore or underestimate other costs that are affected by the models' decision variables. On the basis of the interviews with carrier managers, truck drivers, and fuel‐optimizer vendors, this article proposes a comprehensive model of motor‐carrier fuel optimization that considers all of the costs that are affected by the model's decision variables. Simulation results imply that the proposed model not only attains lower vehicle operating costs than the commercial fuel optimizers, but also gives solutions that are more desirable from the drivers' viewpoint. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

4.
This paper discusses a method of routing yard‐side equipment during loading operations in container terminals. Both the route of yard‐side equipment (such as transfer cranes or straddle carriers) and the number of containers picked up at each yard‐bay is determined simultaneously. The objective of the problem in this paper is to minimize the total container‐handling time in a yard. The size of the search space can be greatly reduced by utilizing inherent properties of the optimal solution. An encoding method is introduced to represent solutions in the search space. A genetic algorithm and a beam search algorithm are suggested to solve the above problem. Numerical experiments have been conducted to compare the performances of the proposed heuristic algorithms against each other and against that of the optimal solution. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 498–514, 2003  相似文献   

5.
We consider a multi‐stage inventory system composed of a single warehouse that receives a single product from a single supplier and replenishes the inventory of n retailers through direct shipments. Fixed costs are incurred for each truck dispatched and all trucks have the same capacity limit. Costs are stationary, or more generally monotone as in Lippman (Management Sci 16, 1969, 118–138). Demands for the n retailers over a planning horizon of T periods are given. The objective is to find the shipment quantities over the planning horizon to satisfy all demands at minimum system‐wide inventory and transportation costs without backlogging. Using the structural properties of optimal solutions, we develop (1) an O(T2) algorithm for the single‐stage dynamic lot sizing problem; (2) an O(T3) algorithm for the case of a single‐warehouse single‐retailer system; and (3) a nested shortest‐path algorithm for the single‐warehouse multi‐retailer problem that runs in polynomial time for a given number of retailers. To overcome the computational burden when the number of retailers is large, we propose aggregated and disaggregated Lagrangian decomposition methods that make use of the structural properties and the efficient single‐stage algorithm. Computational experiments show the effectiveness of these algorithms and the gains associated with coordinated versus decentralized systems. Finally, we show that the decentralized solution is asymptotically optimal. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

6.
The container relocation problem (CRP) is concerned with emptying a single yard‐bay which contains J containers each following a given pickup order so as to minimize the total number of relocations made during their retrieval process. The CRP can be modeled as a binary integer programming (IP) problem and is known to be NP‐hard. In this work, we focus on an extension of the CRP to the case where containers are both received and retrieved from a single yard‐bay, and call it the dynamic container relocation problem. The arrival (departure) sequences of containers to (from) the yard‐bay is assumed to be known a priori. A binary IP formulation is presented for the problem. Then, we propose three types of heuristic methods: index based heuristics, heuristics using the binary IP formulation, and a beam search heuristic. Computational experiments are performed on an extensive set of randomly generated test instances. Our results show that beam search heuristic is very efficient and performs better than the other heuristic methods.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 101–118, 2014  相似文献   

7.
Consider a fleet of vehicles comprised of K1 identical tankers and K2 identical nontankers (small aircraft). Tankers are capable of refueling other tankers as well as nontankers. The problem is to find that refueling sequence of the tankers that maximizes the range simultaneously attainable by all K2 nontankers. A recent paper established that the “unit refueling sequence,” comprised of one tanker refueling at each of K1 refueling operations, is optimal. The same paper also proffered the following conjecture for the case that the number of refueling operations is constrained to be less than the number of tankers: A nonincreasing refueling sequence is optimal. This article proves the conjecture.  相似文献   

8.
The importance of subset selection in multiple regression has been recognized for more than 40 years and, not surprisingly, a variety of exact and heuristic procedures have been proposed for choosing subsets of variables. In the case of polynomial regression, the subset selection problem is complicated by two issues: (1) the substantial growth in the number of candidate predictors, and (2) the desire to obtain hierarchically well‐formulated subsets that facilitate proper interpretation of the regression parameter estimates. The first of these issues creates the need for heuristic methods that can provide solutions in reasonable computation time; whereas the second requires innovative neighborhood search approaches that accommodate the hierarchical constraints. We developed tabu search and variable neighborhood search heuristics for subset selection in polynomial regression. These heuristics are applied to a classic data set from the literature and, subsequently, evaluated in a simulation study using synthetic data sets. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

9.
根据区域目标的侦察需求,研究了面向区域目标的多星调度问题。分析了调度问题中活动收益不确定特征,讨论了活动收益的上下界。针对收益不确定的特点,设计了影响力指标用于评估活动对调度方案的影响。基于活动影响力与执行时间设计了一种带局部诱导的禁忌搜索算法,采用分层次的、变评价函数机制引导求解过程趋向多目标优化,在优先提高覆盖率的同时兼顾减少资源消耗。最后,以算例验证了算法的有效性,并通过方案比较说明算法具有较好的寻优能力。  相似文献   

10.
This paper presents a deterministic approach to schedule patients in an ambulatory surgical center (ASC) such that the number of postanesthesia care unit nurses at the center is minimized. We formulate the patient scheduling problem as new variants of the no‐wait, two‐stage process shop scheduling problem and present computational complexity results for the new scheduling models. Also, we develop a tabu search‐based heuristic algorithm to solve the patient scheduling problem. Our algorithm is shown to be very effective in finding near optimal schedules on a set of real data from a university hospital's ASC. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

11.
In this article, we study item shuffling (IS) problems arising in the logistics system of steel production. An IS problem here is to optimize shuffling operations needed in retrieving a sequence of steel items from a warehouse served by a crane. There are two types of such problems, plate shuffling problems (PSP) and coil shuffling problems (CSP), considering the item shapes. The PSP is modeled as a container storage location assignment problem. For CSP, a novel linear integer programming model is formulated considering the practical stacking and shuffling features. Several valid inequalities are constructed to accelerate the solving of the models. Some properties of optimal solutions of PSP and CSP are also derived. Because of the strong NP‐hardness of the problems, we consider some special cases of them and propose polynomial time algorithms to obtain optimal solutions for these cases. A greedy heuristic is proposed to solve the general problems and its worst‐case performances on both PSP and CSP are analyzed. A tabu search (TS) method with a tabu list of variable length is proposed to further improve the heuristic solutions. Without considering the crane traveling distance, we then construct a rolling variable horizon heuristic for the problems. Numerical experiments show that the proposed heuristic algorithms and the TS method are effective. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

12.
The pure fixed charge transportation problem (PFCTP) is a variation of the fixed charge transportation problem (FCTP) in which there are only fixed costs to be incurred when a route is opened. We present in this paper a direct search procedure using the LIFO decision rule for branching. This procedure is enhanced by the use of 0–1 knapsack problems which determine bounds on partial solutions. Computational results are presented and discussed.  相似文献   

13.
We consider a supplier with finite production capacity and stochastic production times. Customers provide advance demand information (ADI) to the supplier by announcing orders ahead of their due dates. However, this information is not perfect, and customers may request an order be fulfilled prior to or later than the expected due date. Customers update the status of their orders, but the time between consecutive updates is random. We formulate the production‐control problem as a continuous‐time Markov decision process and prove there is an optimal state‐dependent base‐stock policy, where the base‐stock levels depend upon the numbers of orders at various stages of update. In addition, we derive results on the sensitivity of the state‐dependent base‐stock levels to the number of orders in each stage of update. In a numerical study, we examine the benefit of ADI, and find that it is most valuable to the supplier when the time between updates is moderate. We also consider the impact of holding and backorder costs, numbers of updates, and the fraction of customers that provide ADI. In addition, we find that while ADI is always beneficial to the supplier, this may not be the case for the customers who provide the ADI. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

14.
A general multiperiod multi-echelon supply system consisting of n facilities each stocking a single product is studied. At the beginning of a period each facility may order stock from an exogenous source with no delivery lag and proportional ordering costs. During the period the (random) demands at the facilities are satisfied according to a given supply policy that determines to what extent stock may be redistributed from facilities with excess stock to those experiencing shortages. There are storage, shortage, and transportation costs. An ordering policy that minimizes expected costs is sought. If the initial stock is sufficiently small and certain other conditions are fulfilled, it is optimal to order up to a certain base stock level at each facility. The special supply policy in which each facility except facility 1 passes its shortages on to a given lower numbered facility called its direct supplier is examined in some detail. Bounds on the base stock levels are obtained. It is also shown that if the demand distribution at facility j is stochastically smaller (“spread” less) than that at another facility k having the same direct supplier and if certain other conditions are fulfilled, then the optimal base stock level (“virtual” stock out probability) at j is less than (greater than) or equal to that at facility k.  相似文献   

15.
This article examines a problem faced by a firm procuring a material input or good from a set of suppliers. The cost to procure the material from any given supplier is concave in the amount ordered from the supplier, up to a supplier‐specific capacity limit. This NP‐hard problem is further complicated by the observation that capacities are often uncertain in practice, due for instance to production shortages at the suppliers, or competition from other firms. We accommodate this uncertainty in a worst‐case (robust) fashion by modeling an adversarial entity (which we call the “follower”) with a limited procurement budget. The follower reduces supplier capacity to maximize the minimum cost required for our firm to procure its required goods. To guard against uncertainty, the firm can “protect” any supplier at a cost (e.g., by signing a contract with the supplier that guarantees supply availability, or investing in machine upgrades that guarantee the supplier's ability to produce goods at a desired level), ensuring that the anticipated capacity of that supplier will indeed be available. The problem we consider is thus a three‐stage game in which the firm first chooses which suppliers' capacities to protect, the follower acts next to reduce capacity from unprotected suppliers, and the firm then satisfies its demand using the remaining capacity. We formulate a three‐stage mixed‐integer program that is well‐suited to decomposition techniques and develop an effective cutting‐plane algorithm for its solution. The corresponding algorithmic approach solves a sequence of scaled and relaxed problem instances, which enables solving problems having much larger data values when compared to standard techniques. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

16.
This paper considers a problem of locating new facilities in the plane with respect to existing facilities, the locations of which are known. The problem consists of finding locations of new facilities which will minimize a total cost function which consists of a sum of costs directly proportional to the Euclidian distances among the new facilities, and costs directly proportional to the Euclidian distances between new and existing facilities. It is established that the total cost function has a minimum; necessary conditions for a mimumum are obtained; necessary and sufficient conditions are obtained for the function to be strictly convex (it is always convex); when the problem is “well structured,” it is established that for a minimum cost solution the locations of the new facilities will lie in the convex hull of the locations of the existing facilities. Also, a dual to the problem is obtained and interpreted; necessary and sufficient conditions for optimum solutions to the problem, and to its dual, are developed, as well as complementary slackness conditions. Many of the properties to be presented are motivated by, based on, and extend the results of Kuhn's study of the location problem known as the General Fermat Problem.  相似文献   

17.
探讨了无人飞行器(UAV)编队的任务分配问题。任务分配是UAV协同控制的基础,其解是任务区域内各任务的一个排列。求解UAV任务分配问题的有效方法是能在合理的计算时间内找到近似最优解的启发式算法。用对称群描述UAV任务分配的搜索空间,基于右乘运算构造搜索邻域。仿真结果验证了群论禁忌搜索算法的有效性。  相似文献   

18.
We investigate the strategy of transshipments in a dynamic deterministic demand environment over a finite planning horizon. This is the first time that transshipments are examined in a dynamic or deterministic setting. We consider a system of two locations which replenish their stock from a single supplier, and where transshipments between the locations are possible. Our model includes fixed (possibly joint) and variable replenishment costs, fixed and variable transshipment costs, as well as holding costs for each location and transshipment costs between locations. The problem is to determine how much to replenish and how much to transship each period; thus this work can be viewed as a synthesis of transshipment problems in a static stochastic setting and multilocation dynamic deterministic lot sizing problems. We provide interesting structural properties of optimal policies which enhance our understanding of the important issues which motivate transshipments and allow us to develop an efficient polynomial time algorithm for obtaining the optimal strategy. By exploring the reasons for using transshipments, we enable practitioners to envision the sources of savings from using this strategy and therefore motivate them to incorporate it into their replenishment strategies. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:386–408, 2001  相似文献   

19.
针对巡航导弹航迹规划这个复杂的优化问题,一个禁忌退火混合优化算法被提出.首先,该算法是以基本模拟退火算法为基础.其次,为了加快该模拟退火算法的收敛速度,在恶化解的接受判断过程中,增加了一定动态的约束条件.最后,为了使最优解能够跳出局部最优的陷阱,使用了一个动态的禁忌表.仿真结果验证了该禁忌退火混合优化算法能够取得目标函数更优的航迹规划路径,从而有效提高巡航导弹的作战效能.  相似文献   

20.
This paper studies a scheduling problem arising in a beef distribution system where pallets of various types of beef products in the warehouse are first depalletized and then individual cases are loaded via conveyors to the trucks which deliver beef products to various customers. Given each customer's demand for each type of beef, the problem is to find a depalletizing and truck loading schedule that fills all the demands at a minimum total cost. We first show that the general problem where there are multiple trucks and each truck covers multiple customers is strongly NP‐hard. Then we propose polynomial‐time algorithms for the case where there are multiple trucks, each covering only one customer, and the case where there is only one truck covering multiple customers. We also develop an optimal dynamic programming algorithm and a heuristic for solving the general problem. By comparing to the optimal solutions generated by the dynamic programming algorithm, the heuristic is shown to be capable of generating near optimal solutions quickly. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号