首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
If the number of customers in a queueing system as a function of time has a proper limiting steady‐state distribution, then that steady‐state distribution can be estimated from system data by fitting a general stationary birth‐and‐death (BD) process model to the data and solving for its steady‐state distribution using the familiar local‐balance steady‐state equation for BD processes, even if the actual process is not a BD process. We show that this indirect way to estimate the steady‐state distribution can be effective for periodic queues, because the fitted birth and death rates often have special structure allowing them to be estimated efficiently by fitting parametric functions with only a few parameters, for example, 2. We focus on the multiserver Mt/GI/s queue with a nonhomogeneous Poisson arrival process having a periodic time‐varying rate function. We establish properties of its steady‐state distribution and fitted BD rates. We also show that the fitted BD rates can be a useful diagnostic tool to see if an Mt/GI/s model is appropriate for a complex queueing system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 664–685, 2015  相似文献   

2.
We consider a make‐to‐order manufacturer facing random demand from two classes of customers. We develop an integrated model for reserving capacity in anticipation of future order arrivals from high priority customers and setting due dates for incoming orders. Our research exhibits two distinct features: (1) we explicitly model the manufacturer's uncertainty about the customers' due date preferences for future orders; and (2) we utilize a service level measure for reserving capacity rather than estimating short and long term implications of due date quoting with a penalty cost function. We identify an interesting effect (“t‐pooling”) that arises when the (partial) knowledge of customer due date preferences is utilized in making capacity reservation and order allocation decisions. We characterize the relationship between the customer due date preferences and the required reservation quantities and show that not considering the t‐pooling effect (as done in traditional capacity and inventory rationing literature) leads to excessive capacity reservations. Numerical analyses are conducted to investigate the behavior and performance of our capacity reservation and due date quoting approach in a dynamic setting with multiple planning horizons and roll‐overs. One interesting and seemingly counterintuitive finding of our analyses is that under certain conditions reserving capacity for high priority customers not only improves high priority fulfillment, but also increases the overall system fill rate. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

3.
This article presents a simple proof of Hu's algorithm for scheduling in minimum time a set of tasks constrained by precedence tree constraints, each task requiring a unit time to complete, and where m processors are available.  相似文献   

4.
This paper presents a branch‐and‐price algorithm for scheduling n jobs on m nonhomogeneous parallel machines with multiple time windows. An additional feature of the problem is that each job falls into one of ρ priority classes and may require two operations. The objective is to maximize the weighted number of jobs scheduled, where a job in a higher priority class has “infinitely” more weight or value than a job in a lower priority class. The methodology makes use of a greedy randomized adaptive search procedure (GRASP) to find feasible solutions during implicit enumeration and a two‐cycle elimination heuristic when solving the pricing subproblems. Extensive computational results are presented based on data from an application involving the use of communications relay satellites. Many 100‐job instances that were believed to be beyond the capability of exact methods, were solved within minutes. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

5.
The output of the queueing system M/M/1 is well known to be Poisson. This has also been shown to be true for other more general models inclusive of M/Mn/1; the system in which arrivals and epochs of service completion are elements of a birth and death process with parameters Λ and nμ, respectively, when the system contains n ≥ 1 customers. We shall here show that this result is not true in MnM/1; a system where arrival parameter is state dependent quantity Λ/n+1. Expressions will be given for the steady state joint density of two consecutive output intervals as well as the coefficient of correlation between them.  相似文献   

6.
This paper discusses scheduling of data transmission when data can only be transmitted in one direction at a time. A common policy used is the so-called alternating priority policy. In this paper we select a more general class of policies named the {Si; O} policy. We show how to determine the optimal parameters of the {Si; O} policy for given system parameters. We also give a simple example to show that {Si; O} policy is, in fact, better then alternating priority policy.  相似文献   

7.
We investigate the problem of scheduling a fleet of vehicles to visit the customers located on a path to minimize some regular function of the visiting times of the customers. For the single‐vehicle problem, we prove that it is pseudopolynomially solvable for any minsum objective and polynomially solvable for any minmax objective. Also, we establish the NP‐hardness of minimizing the weighted number of tardy customers and the total weighted tardiness, and present polynomial algorithms for their special cases with a common due date. For the multivehicle problem involving n customers, we show that an optimal solution can be found by solving or O(n) single‐vehicle problems. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 61: 34–43, 2014  相似文献   

8.
The individual and social optimum control policies for entry to an M/M//1 queue serving several classes of customers have been shown to be control-limit policies. The technique of policy iteration provides the social optimum policy for such a queue in a straightforward manner. In this article, the problem of finding the optimal control policy for the M/Ek/1 system is solved, thereby expanding the potential applicability of the solutions developed. The Markovian nature of the queueing system is preserved by considering the service as having k sequential phases, each with independent, identically distributed, exponential service times, through which a customer must pass to be serviced. The optimal policy derived by policy iteration for such a system is likely to be difficult to use because it requires knowledge of the number of phases rather than customers in the system when an arrival occurs. To circumvent this difficulty, a heuristic is used to find a good usable (implementable) solution. In addition, a mixed-integer program is developed which yields the optimal implementable solution when solved.  相似文献   

9.
Consider a sequential dynamic pricing model where a seller sells a given stock to a random number of customers. Arriving one at a time, each customer will purchase one item if the product price is lower than her personal reservation price. The seller's objective is to post a potentially different price for each customer in order to maximize the expected total revenue. We formulate the seller's problem as a stochastic dynamic programming model, and develop an algorithm to compute the optimal policy. We then apply the results from this sequential dynamic pricing model to the case where customers arrive according to a continuous‐time point process. In particular, we derive tight bounds for the optimal expected revenue, and develop an asymptotically optimal heuristic policy. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

10.
There are n customers that need to be served. Customer i will only wait in queue for an exponentially distributed time with rate λi before departing the system. The service time of customer i has distribution Fi, and on completion of service of customer i a positive reward ri is earned. There is a single server and the problem is to choose, after each service completion, which currently in queue customer to serve next so as to maximize the expected total return. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 659–663, 2015  相似文献   

11.
Most scheduling problems are notoriously intractable, so the majority of algorithms for them are heuristic in nature. Priority rule‐based methods still constitute the most important class of these heuristics. Of these, in turn, parametrized biased random sampling methods have attracted particular interest, due to the fact that they outperform all other priority rule‐based methods known. Yet, even the “best” such algorithms are unable to relate to the full range of instances of a problem: Usually there will exist instances on which other algorithms do better. We maintain that asking for the one best algorithm for a problem may be asking too much. The recently proposed concept of control schemes, which refers to algorithmic schemes allowing to steer parametrized algorithms, opens up ways to refine existing algorithms in this regard and improve their effectiveness considerably. We extend this approach by integrating heuristics and case‐based reasoning (CBR), an approach that has been successfully used in artificial intelligence applications. Using the resource‐constrained project scheduling problem as a vehicle, we describe how to devise such a CBR system, systematically analyzing the effect of several criteria on algorithmic performance. Extensive computational results validate the efficacy of our approach and reveal a performance similar or close to state‐of‐the‐art heuristics. In addition, the analysis undertaken provides new insight into the behaviour of a wide class of scheduling heuristics. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 201–222, 2000  相似文献   

12.
We consider a two‐phase service queueing system with batch Poisson arrivals and server vacations denoted by MX/G1G2/1. The first phase service is an exhaustive or a gated bulk service, and the second phase is given individually to the members of a batch. By a reduction to an MX/G/1 vacation system and applying the level‐crossing method to a workload process with two types of vacations, we obtain the Laplace–Stieltjes transform of the sojourn time distribution in the MX/G1G2/1 with single or multiple vacations. The decomposition expression is derived for the Laplace–Stieltjes transform of the sojourn time distribution, and the first two moments of the sojourn time are provided. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
One of the achievements of scheduling theory is its contribution to practical applications in industrial settings. In particular, taking finiteness of the available production capacity explicitly into account, has been a major improvement of standard practice. Availability of raw materials, however, which is another important constraint in practice, has been largely disregarded in scheduling theory. This paper considers basic models for scheduling problems in contemporary manufacturing settings where raw material availability is of critical importance. We explore single scheduling machine problems, mostly with unit or all equal processing times, and Lmax and Cmax objectives. We present polynomial time algorithms, complexity and approximation results, and computational experiments. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

14.
This article compares the profitability of two pervasively adopted return policies—money‐back guarantee and hassle‐free policies. In our model, a seller sells to consumers with heterogeneous valuations and hassle costs. Products are subject to quality risk, and product misfit can only be observed post‐purchase. While the hassle‐free policy is cost advantageous from the seller's viewpoint, a money‐back guarantee allows the seller to fine‐tune the consumer hassle on returning the product. Thus, when the two return policies lead to the same consumer behaviors, the hassle‐free policy dominates. Conversely, a money‐back guarantee can be more profitable even if on average, high‐valuation consumers experience a lower hassle cost than the low‐valuation ones. The optimal hassle cost can be higher when product quality gets improved; thus, it is not necessarily a perfect proxy or signal of the seller's quality. We further allow the seller to adopt a mixture of these policies, and identify the concrete operating regimes within which these return policies are optimal among more flexible policies. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 403–417, 2014  相似文献   

15.
We study a parallel machine scheduling problem, where a job j can only be processed on a specific subset of machines Mj, and the Mj subsets of the n jobs are nested. We develop a two‐phase heuristic for minimizing the total weighted tardiness subject to the machine eligibility constraints. In the first phase, we compute the factors and statistics that characterize a problem instance. In the second phase, we propose a new composite dispatching rule, the Apparent Tardiness Cost with Flexibility considerations (ATCF) rule, which is governed by several scaling parameters of which the values are determined by the factors obtained in the first phase. The ATCF rule is a generalization of the well‐known ATC rule which is very widely used in practice. We further discuss how to improve the dispatching rule using some simple but powerful properties without requiring additional computation time, and the improvement is quite satisfactory. We apply the Sequential Uniform Design Method to design our experiments and conduct an extensive computational study, and we perform tests on the performance of the ATCF rule using a real data set from a large hospital in China. We further compare its performance with that of the classical ATC rule. We also compare the schedules improved by the ATCF rule with what we believe are Near Optimal schedules generated by a general search procedure. The computational results show that especially with a low due date tightness, the ATCF rule performs significantly better than the well‐known ATC rule generating much improved schedules that are close to the Near Optimal schedules. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 249–267, 2017  相似文献   

16.
Motivated by the flow of products in the iron and steel industry, we study an identical and parallel machine scheduling problem with batch deliveries, where jobs finished on the parallel machines are delivered to customers in batches. Each delivery batch has a capacity and incurs a cost. The objective is to find a coordinated production and delivery schedule that minimizes the total flow time of jobs plus the total delivery cost. This problem is an extension of the problem considered by Hall and Potts, Ann Oper Res 135 (2005) 41–64, who studied a two‐machine problem with an unbounded number of transporters and unbounded delivery capacity. We first provide a dynamic programming algorithm to solve a special case with a given job assignment to the machines. A heuristic algorithm is then presented for the general problem, and its worst‐case performance ratio is analyzed. The computational results show that the heuristic algorithm can generate near‐optimal solutions. Finally, we offer a fully polynomial‐time approximation scheme for a fixed number of machines. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 492–502, 2016  相似文献   

17.
We consider a capacitated inventory model with flexible delivery upgrades, in which the seller allocates its on‐hand inventory to price‐ and delivery‐time‐sensitive customers. The seller has two decisions: inventory commitment and replenishment. The former addresses how the on‐hand inventories are allocated between the two classes of customers within an inventory cycle. The latter addresses how the inventory is replenished between inventory cycles. We develop optimal inventory allocation, upgrade, and replenishment policies and demonstrate that the optimal policy can be characterized by a set of switching curves. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 418–426, 2014  相似文献   

18.
In this paper we consider the capacitated multi‐facility Weber problem with the Euclidean, squared Euclidean, and ?p‐distances. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the distance between them. We first present a mixed integer linear programming approximation of the problem. We then propose new heuristic solution methods based on this approximation. Computational results on benchmark instances indicate that the new methods are both accurate and efficient. © 2006 Wiley Periodicals, Inc. Naval Research Logistics 2006  相似文献   

19.
We consider the problem of scheduling a set of n jobs on a single batch machine, where several jobs can be processed simultaneously. Each job j has a processing time pj and a size sj. All jobs are available for processing at time 0. The batch machine has a capacity D. Several jobs can be batched together and processed simultaneously, provided that the total size of the jobs in the batch does not exceed D. The processing time of a batch is the largest processing time among all jobs in the batch. There is a single vehicle available for delivery of the finished products to the customer, and the vehicle has capacity K. We assume that K = rD, where and r is an integer. The travel time of the vehicle is T; that is, T is the time from the manufacturer to the customer. Our goal is to find a schedule of the jobs and a delivery plan so that the service span is minimized, where the service span is the time that the last job is delivered to the customer. We show that if the jobs have identical sizes, then we can find a schedule and delivery plan in time such that the service span is minimum. If the jobs have identical processing times, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most 11/9 times the optimal service span. When the jobs have arbitrary processing times and arbitrary sizes, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most twice the optimal service span. We also derive upper bounds of the absolute worst‐case ratios in both cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 470–482, 2015  相似文献   

20.
This article is devoted to the study of an M/G/1 queue with a particular vacation discipline. The server is due to take a vacation as soon as it has served exactly N customers since the end of the previous vacation. N may be either a constant or a random variable. If the system becomes empty before the server has served N customers, then it stays idle until the next customer arrival. Such a vacation discipline arises, for example, in production systems and in order picking in warehouses. We determine the joint transform of the length of a visit period and the number of customers in the system at the end of that period. We also derive the generating function of the number of customers at a random instant, and the Laplace–Stieltjes transform of the delay of a customer. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 646–658, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号