首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
We study a deterministic two‐machine flowshop scheduling problem with an assumption that one of the two machines is not available in a specified time period. This period can be due to a breakdown, preventive maintenance, or processing unfinished jobs from a previous planning horizon. The problem is known to be NP‐hard. Pseudopolynomial dynamic programming algorithms and heuristics with worst case error bounds are given in the literature to solve the problem. They are different for the cases when the unavailability interval is for the first or second machine. The existence of a fully polynomial time approximation scheme (FPTAS) was formulated as an open conjecture in the literature. In this paper, we show that the two cases of the problem under study are equivalent to similar partition type problems. Then we derive a generic FPTAS for the latter problems with O(n54) time complexity. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

2.
One of the achievements of scheduling theory is its contribution to practical applications in industrial settings. In particular, taking finiteness of the available production capacity explicitly into account, has been a major improvement of standard practice. Availability of raw materials, however, which is another important constraint in practice, has been largely disregarded in scheduling theory. This paper considers basic models for scheduling problems in contemporary manufacturing settings where raw material availability is of critical importance. We explore single scheduling machine problems, mostly with unit or all equal processing times, and Lmax and Cmax objectives. We present polynomial time algorithms, complexity and approximation results, and computational experiments. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

3.
In the classical multiprocessor scheduling problem independent jobs must be assigned to parallel, identical machines with the objective of minimizing the makespan. This article explores the effect of assignment restrictions on the jobs for multiprocessor scheduling problems. This means that each job can only be processed on a specific subset of the machines. Particular attention is given to the case of processing times restricted to one of two values, 1 and λ, differing by at most 2. A matching based polynomial time ε‐approximation algorithm is developed that has a performance ratio tending to . This algorithm is shown to have the best possible performance, tending to 3/2, for processing times 1 and 2. For the special case of nested processing sets, i.e., when the sets of machines upon which individual jobs may be assigned are non‐overlapping, the behavior of list scheduling algorithms is explored. Finally, for assignment restrictions determined by just one characteristic of the machines, such as disc storage or memory constraint in the case of high performance computing, we contribute an algorithm that provides a 3/2 worst case bound and runs in time linear in the number of jobs. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
In this paper we study the scheduling problem that considers both production and job delivery at the same time with machine availability considerations. Only one vehicle is available to deliver jobs in a fixed transportation time to a distribution center. The vehicle can load at most K jobs as a delivery batch in one shipment due to the vehicle capacity constraint. The objective is to minimize the arrival time of the last delivery batch to the distribution center. Since machines may not always be available over the production period in real life due to preventive maintenance, we incorporate machine availability into the models. Three scenarios of the problem are studied. For the problem in which the jobs are processed on a single machine and the jobs interrupted by the unavailable machine interval are resumable, we provide a polynomial algorithm to solve the problem optimally. For the problem in which the jobs are processed on a single machine and the interrupted jobs are nonresumable, we first show that the problem is NP‐hard. We then propose a heuristic with a worst‐case error bound of 1/2 and show that the bound is tight. For the problem in which the jobs are processed on either one of two parallel machines, where only one machine has an unavailable interval and the interrupted jobs are resumable, we propose a heuristic with a worst‐case error bound of 2/3. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

5.
Most machine scheduling models assume that the machines are available all of the time. However, in most realistic situations, machines need to be maintained and hence may become unavailable during certain periods. In this paper, we study the problem of processing a set of n jobs on m parallel machines where each machine must be maintained once during the planning horizon. Our objective is to schedule jobs and maintenance activities so that the total weighted completion time of jobs is minimized. Two cases are studied in this paper. In the first case, there are sufficient resources so that different machines can be maintained simultaneously if necessary. In the second case, only one machine can be maintained at any given time. In this paper, we first show that, even when all jobs have the same weight, both cases of the problem are NP-hard. We then propose branch and bound algorithms based on the column generation approach for solving both cases of the problem. Our algorithms are capable of optimally solving medium sized problems within a reasonable computational time. We note that the general problem where at most j machines, 1 ≤ jm, can be maintained simultaneously, can be solved similarly by the column generation approach proposed in this paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 145–165, 2000  相似文献   

6.
We consider a problem of scheduling jobs on m parallel machines. The machines are dedicated, i.e., for each job the processing machine is known in advance. We mainly concentrate on the model in which at any time there is one unit of an additional resource. Any job may be assigned the resource and this reduces its processing time. A job that is given the resource uses it at each time of its processing. No two jobs are allowed to use the resource simultaneously. The objective is to minimize the makespan. We prove that the two‐machine problem is NP‐hard in the ordinary sense, describe a pseudopolynomial dynamic programming algorithm and convert it into an FPTAS. For the problem with an arbitrary number of machines we present an algorithm with a worst‐case ratio close to 3/2, and close to 3, if a job can be given several units of the resource. For the problem with a fixed number of machines we give a PTAS. Virtually all algorithms rely on a certain variant of the linear knapsack problem (maximization, minimization, multiple‐choice, bicriteria). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

7.
The majority of scheduling literature assumes that the machines are available at all times. In this paper, we study single machine scheduling problems where the machine maintenance must be performed within certain intervals and hence the machine is not available during the maintenance periods. We also assume that if a job is not processed to completion before the machine is stopped for maintenance, an additional setup is necessary when the processing is resumed. Our purpose is to schedule the maintenance and jobs to minimize some performance measures. The objective functions that we consider are minimizing the total weighted job completion times and minimizing the maximum lateness. In both cases, maintenance must be performed within a fixed period T, and the time for the maintenance is a decision variable. In this paper, we study two scenarios concerning the planning horizon. First, we show that, when the planning horizon is long in relation to T, the problem with either objective function is NP-complete, and we present pseudopolynomial time dynamic programming algorithms for both objective functions. In the second scenario, the planning horizon is short in relation to T. However, part of the period T may have elapsed before we schedule any jobs in this planning horizon, and the remaining time before the maintenance is shorter than the current planning horizon. Hence we must schedule one maintenance in this planning horizon. We show that the problem of minimizing the total weighted completion times in this scenario is NP-complete, while the shortest processing time (SPT) rule and the earliest due date (EDD) rule are optimal for the total completion time problem and the maximum lateness problem respectively. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 845–863, 1999  相似文献   

8.
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is N P‐hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst‐case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two‐machine flow shop and the open shop problems with a single server are also shown to be N P‐hard in the strong sense. However, we reduce the two‐machine flow shop no‐wait problem with a single server to the Gilmore—Gomory traveling salesman problem and solve it in polynomial time. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 304–328, 2000  相似文献   

9.
In the last decade, there has been much progress in understanding scheduling problems in which selfish jobs aim to minimize their individual completion time. Most of this work has focused on makespan minimization as social objective. In contrast, we consider as social cost the total weighted completion time, that is, the sum of the agent costs, a standard definition of welfare in economics. In our setting, jobs are processed on restricted uniform parallel machines, where each machine has a speed and is only capable of processing a subset of jobs; a job's cost is its weighted completion time; and each machine sequences its jobs in weighted shortest processing time (WSPT) order. Whereas for the makespan social cost the price of anarchy is not bounded by a constant in most environments, we show that for our minsum social objective the price of anarchy is bounded above by a small constant, independent of the instance. Specifically, we show that the price of anarchy is exactly 2 for the class of unit jobs, unit speed instances where the finite processing time values define the edge set of a forest with the machines as nodes. For the general case of mixed job strategies and restricted uniform machines, we prove that the price of anarchy equals 4. From a classical machine scheduling perspective, our results establish the same constant performance guarantees for WSPT list scheduling. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

10.
In this article, we study a parallel machine scheduling problem with inclusive processing set restrictions and the option of job rejection. In the problem, each job is compatible to a subset of machines, and machines are linearly ordered such that a higher‐indexed machine can process all those jobs that a lower‐indexed machine can process (but not conversely). To achieve a tight production due date, some of the jobs might be rejected at certain penalty. We first study the problem of minimizing the makespan of all accepted jobs plus the total penalty cost of all rejected jobs, where we develop a ‐approximation algorithm with a time complexity of . We then study two bicriteria variants of the problem. For the variant problem of minimizing the makespan subject to a given bound on the total rejection cost, we develop a ‐approximation algorithm with a time complexity of . For the variant problem of maximizing the total rejection cost of the accepted jobs subject to a given bound on the makespan, we present a 0.5‐approximation algorithm with a time complexity of . © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 667–681, 2017  相似文献   

11.
This paper considers the scheduling problem to minimize total tardiness given multiple machines, ready times, sequence dependent setups, machine downtime and scarce tools. We develop a genetic algorithm based on random keys representation, elitist reproduction, Bernoulli crossover and immigration type mutation. Convergence of the algorithm is proved. We present computational results on data sets from the auto industry. To demonstrate robustness of the approach, problems from the literature of different structure are solved by essentially the same algorithm. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 199–211, 1999  相似文献   

12.
We study the problems of scheduling a set of nonpreemptive jobs on a single or multiple machines without idle times where the processing time of a job is a piecewise linear nonincreasing function of its start time. The objectives are the minimization of makespan and minimization of total job completion time. The single machine problems are proved to be NP‐hard, and some properties of their optimal solutions are established. A pseudopolynomial time algorithm is constructed for makespan minimization. Several heuristics are derived for both total completion time and makespan minimization. Computational experiments are conducted to evaluate their efficiency. NP‐hardness proofs and polynomial time algorithms are presented for some special cases of the parallel machine problems. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 531–554, 2003  相似文献   

13.
We consider the problem of scheduling orders on identical machines in parallel. Each order consists of one or more individual jobs. A job that belongs to an order can be processed by any one of the machines. Multiple machines can process the jobs of an order concurrently. No setup is required if a machine switches over from one job to another. Each order is released at time zero and has a positive weight. Preemptions are not allowed. The completion time of an order is the time at which all jobs of that order have been completed. The objective is to minimize the total weighted completion time of the orders. The problem is NP‐hard for any fixed number (≥2) of machines. Because of this, we focus our attention on two classes of heuristics, which we refer to as sequential two‐phase heuristics and dynamic two‐phase heuristics. We perform a worst case analysis as well as an empirical analysis of nine heuristics. Our analyses enable us to rank these heuristics according to their effectiveness, taking solution quality as well as running time into account. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

14.
We consider the problem of scheduling N jobs on M parallel machines so as to minimize the maximum earliness or tardiness cost incurred for each of the jobs. Earliness and tardiness costs are given by general (but job-independent) functions of the amount of time a job is completed prior to or after a common due date. We show that in problems with a nonrestrictive due date, the problem decomposes into two parts. Each of the M longest jobs is assigned to a different machine, and all other jobs are assigned to the machines so as to minimize their makespan. With these assignments, the individual scheduling problems for each of the machines are simple to solve. We demonstrate that several simple heuristics of low complexity, based on this characterization, are asymptotically optimal under mild probabilistic conditions. We develop attractive worst-case bounds for them. We also develop a simple closed-form lower bound for the minimum cost value. The bound is asymptotically accurate under the same probabilistic conditions. In the case where the due date is restrictive, the problem is more complex only in the sense that the set of initial jobs on the machines is not easily characterized. However, we extend our heuristics and lower bounds to this general case as well. Numerical studies exhibit that these heuristics perform excellently even for small- or moderate-size problems both in the restrictive and nonrestrictive due-date case. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
In this paper we consider the problem of scheduling a set of jobs on a single machine on which a rate‐modifying activity may be performed. The rate‐modifying activity is an activity that changes the production rate of the machine. So the processing time of a job is a variable, which depends on whether it is scheduled before or after the rate‐modifying activity. We assume that the rate‐modifying activity can take place only at certain predetermined time points, which is a constrained case of a similar problem discussed in the literature. The decisions under consideration are whether and when to schedule the rate‐modifying activity, and how to sequence the jobs in order to minimize some objectives. We study the problems of minimizing makespan and total completion time. We first analyze the computational complexity of both problems for most of the possible versions. The analysis shows that the problems are NP‐hard even for some special cases. Furthermore, for the NP‐hard cases of the makespan problem, we present a pseudo‐polynomial time optimal algorithm and a fully polynomial time approximation scheme. For the total completion time problem, we provide a pseudo‐polynomial time optimal algorithm for the case with agreeable modifying rates. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

16.
We consider problem of scheduling jobs on‐line on batch processing machines with dynamic job arrivals to minimize makespan. A batch machine can handle up to B jobs simultaneously. The jobs that are processed together from a batch, and all jobs in a batch start and complete at the same time. The processing time of a batch is given by the longest processing time of any job in the batch. Each job becomes available at its arrival time, which is unknown in advance, and its processing time becomes known upon its arrival. In the first part of this paper, we address the single batch processing machine scheduling problem. First we deal with two variants: the unbounded model where B is sufficiently large and the bounded model where jobs have two distinct arrival times. For both variants, we provide on‐line algorithms with worst‐case ratio (the inverse of the Golden ratio) and prove that these results are the best possible. Furthermore, we generalize our algorithms to the general case and show a worst‐case ratio of 2. We then consider the unbounded case for parallel batch processing machine scheduling. Lower bound are given, and two on‐line algorithms are presented. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 241–258, 2001  相似文献   

17.
We consider the multitasking scheduling problem on unrelated parallel machines to minimize the total weighted completion time. In this problem, each machine processes a set of jobs, while the processing of a selected job on a machine may be interrupted by other available jobs scheduled on the same machine but unfinished. To solve this problem, we propose an exact branch‐and‐price algorithm, where the master problem at each search node is solved by a novel column generation scheme, called in‐out column generation, to maintain the stability of the dual variables. We use a greedy heuristic to obtain a set of initial columns to start the in‐out column generation, and a hybrid strategy combining a genetic algorithm and an exact dynamic programming algorithm to solve the pricing subproblems approximately and exactly, respectively. Using randomly generated data, we conduct numerical studies to evaluate the performance of the proposed solution approach. We also examine the effects of multitasking on the scheduling outcomes, with which the decision maker can justify making investments to adopt or avoid multitasking.  相似文献   

18.
We study a two‐machine flow shop scheduling problem with no‐wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst‐case ratio of 3/2. For the second scenario, we offer a 4/3‐approximation algorithm. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

19.
We investigate a single‐machine scheduling problem for which both the job processing times and due windows are decision variables to be determined by the decision maker. The job processing times are controllable as a linear or convex function of the amount of a common continuously divisible resource allocated to the jobs, where the resource allocated to the jobs can be used in discrete or continuous quantities. We use the common flow allowances due window assignment method to assign due windows to the jobs. We consider two performance criteria: (i) the total weighted number of early and tardy jobs plus the weighted due window assignment cost, and (ii) the resource consumption cost. For each resource consumption function, the objective is to minimize the first criterion, while keeping the value of the second criterion no greater than a given limit. We analyze the computational complexity, devise pseudo‐polynomial dynamic programming solution algorithms, and provide fully polynomial‐time approximation schemes and an enhanced volume algorithm to find high‐quality solutions quickly for the considered problems. We conduct extensive numerical studies to assess the performance of the algorithms. The computational results show that the proposed algorithms are very efficient in finding optimal or near‐optimal solutions. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 41–63, 2017  相似文献   

20.
In this paper, we study a m‐parallel machine scheduling problem with a non‐crossing constraint motivated by crane scheduling in ports. We decompose the problem to allow time allocations to be determined once crane assignments are known and construct a backtracking search scheme that manipulates domain reduction and pruning strategies. Simple approximation heuristics are developed, one of which guarantees solutions to be at most two times the optimum. For large‐scale problems, a simulated annealing heuristic that uses random neighborhood generation is provided. Computational experiments are conducted to test the algorithms. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号