首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
This paper extends the Low-Lippman M/M/1 model to the case of Gamma service times. Specifically, we have a queue in which arrivals are Poisson, service time is Gamma-distributed, and the arrival rate to the system is subject to setting an admission fee p. The arrival rate λ(p) is non-increasing in p. We prove that the optimal admission fee p* is a non-decreasing function of the customer work load on the server. The proof is for an infinite capacity queue and holds for the infinite horizon continuous time Markov decision process. In the special case of exponential service time, we extend the Low-Lippman model to include a state-dependent service rate and service cost structure (for finite or infinite time horizon and queue capacity). Relatively recent dynamic programming techniques are employed throughout the paper. Due to the large class of functions represented by the Gamma family, the extension is of interest and utility.  相似文献   

2.
A service center to which customers bring failed items for repair is considered. The items are exchangeable in the sense that a customer is ready to take in return for the failed item he brought to the center any good item of the same kind. This exchangeability feature makes it possible for the service center to possess spares. The focus of the article is on customer delay in the system—the time that elapses since the arrival of a customer with a failed item and his departure with a good one—when repaired items are given to waiting customers on a FIFO basis. An algorithm is developed for the computation of the delay distribution when the item repair system operates as an M/M/c queue.  相似文献   

3.
首先将战术装备维修保障过程描述为M/M/c/k混合规则的排队过程,其损坏装备到达服从相互独立的泊松分布,维修时间服从相互独立的指数分布。同时考虑系统的到达率和维修率随系统中装备数量的变化,重要战损装备等待维修时的不耐烦性以及重要装备对一般装备的强占性优先权情况,结合战术装备维修保障系统的结构和规模,建立战术装备维修保障M/M/3/12排队模型。列出模型的平衡方程,采用矩阵的分析方法得到重要装备和一般装备的稳态分布表达式,并以队长为指标进行了系统性能的计算。  相似文献   

4.
We study via simulation an M/M/1 queueing system with the assumption that a customer's service time and the interarrival interval separating his arrival from that of his predecessor are correlated random variables having a bivariate exponential distribution. We show that positive correlation reduces the mean and variance of the total waiting time and that negative correlation has the opposite effect. By using spectral analysis and a nonparametric test applied to the sample power spectra associated with certain simulated waiting times we show the effect to be statistically significant.  相似文献   

5.
The waiting time in the random order service G/M/m queue is studied. For the Laplace transform we obtain a simpler representation than previously available. For the moments, an explicit recursive algorithm is given and carried out numrically for some cases. This gives rise to the conjecture that the waiting-time distributio can be approximated by the one for M/M/m after a suitable change of scale.  相似文献   

6.
The busy period, busy cycle, and the numbers of customers served and lost therein, of the G/M/m queue with balking is studied via the embedded Markov chain approach. It is shown that the expectations of the two discrete variables give the loss probability. For the special case G/M/1/N a closed expression in terms of contour integrals is obtained for the Laplace transform of these four variables. This yields as a byproduct the LIFO waiting time distribution for the G/M/m/N queue. The waiting time under random order service for this queue is also studied.  相似文献   

7.
AnM/G/1 queueing system is studied in which the service time required by a customer is dependent on the interarrival time between his arrival and that of his predecessor Assuming the two variables are “associated,” we prove that the expected delay in this system is less than or equal to than of a conventional M/G/1 queue This conclusion has been verified via simulation by Mitchell and Paulson [9] for a special class of dependent M/M/1 queue. Their model is a special case of the one we consider here. We also study another modified GI/G/1 queue. where the arrival process and/or the service process are individually “associated”.  相似文献   

8.
A queueing system characterized by the discrete batch Markovian arrival process (D-BMAP) and a probability of phase type distribution for the service time is one that arises frequently in the area of telecommunications. Under this arrival process and service time distribution we derive the waiting time distribution for three queue disciplines: first in first out (FIFO), last in first out (LIFO), and service in random order (SIRO). We also outline efficient algorithmic procedures for computing the waiting time distributions under each discipline. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 559–576, 1997  相似文献   

9.
The maximum likelihood estimator of the service distribution function of an M/G/∞ service system is obtained based on output time observations. This estimator is useful when observation of the service time of each customer could introduce bias or may be impossible. The maximum likelihood estimator is compared to the estimator proposed by Mark Brown, [2]. Relative to each other, Brown's estimator is useful in light traffic while the maximum likelihood estimator is applicble in heavy trafic. Both estimators are compared to the empirical distribution function based on a sample of service times and are found to have drawbacks although each estimator may have applications in special circumstances.  相似文献   

10.
From an original motivation in quantitative inventory modeling, we develop methods for testing the hypothesis that the service times of an M/G/1 queue are exponentially distributed, given a sequence of observations of customer line and/or system waits. The approaches are mostly extensions of the well-known exponential goodness-of-fit test popularized by Gnedenko, which results from the observation that the sum of a random exponential sample is Erlang distributed and thus that the quotient of two independent exponential sample means is F distributed.  相似文献   

11.
A simple method is presented for deriving the mean and variance of the queueing time distribution in an M/G/1 queue when the priorities assigned to customers have an assignment probability distribution. Several examples illustrate the results. The mean and variance of the queueing time distribution for the longest service time discipline are derived, and its disadvantages are discussed.  相似文献   

12.
We consider the problem of service rate control of a single‐server queueing system with a finite‐state Markov‐modulated Poisson arrival process. We show that the optimal service rate is nondecreasing in the number of customers in the system; higher congestion levels warrant higher service rates. On the contrary, however, we show that the optimal service rate is not necessarily monotone in the current arrival rate. If the modulating process satisfies a stochastic monotonicity property, the monotonicity is recovered. We examine several heuristics and show where heuristics are reasonable substitutes for the optimal control. None of the heuristics perform well in all the regimes and the fluctuation rate of the modulating process plays an important role in deciding the right heuristic. Second, we discuss when the Markov‐modulated Poisson process with service rate control can act as a heuristic itself to approximate the control of a system with a periodic nonhomogeneous Poisson arrival process. Not only is the current model of interest in the control of Internet or mobile networks with bursty traffic, but it is also useful in providing a tractable alternative for the control of service centers with nonstationary arrival rates. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 661–677, 2013  相似文献   

13.
Certain types of communication nodes can be viewed as multichannel queueing systems with two types of arrival streams. Data arrivals are characterized by high arrival and service rates and have the ability to queue if all service channels are busy. Voice arrivals have small arrival and service rates and do not have the ability to wait when the channels are full. Computational procedures are presented for obtaining the invariant probabilities associated with the queueing model.  相似文献   

14.
One of the major problems in modeling production systems is how to treat the job arrival process. Restrictive assumptions such as Markovian arrivals do not represent real world systems, especially if the arrival process is generated by job departures from upstream workstations. Under these circumstances, cost‐effective policies that are robust with respect to the nature of the arrival process become of interest. In this paper, we focus on minimizing the expected total holding and setup costs in a two‐stage produce‐to‐order production system operated by a cross‐trained worker. We will show that if setup times are insignificant in comparison with processing times, then near‐optimal policies can be generated with very robust performances with respect to the arrival process. We also present conditions under which these near‐optimal policies can be obtained by using only the arrival and service rates. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

15.
This paper considers a discrete time, single item production/inventory system with random period demands. Inventory levels are reviewed periodically and managed using a base‐stock policy. Replenishment orders are placed with the production system which is capacitated in the sense that there is a single server that sequentially processes the items one at a time with stochastic unit processing times. In this setting the variability in demand determines the arrival pattern of production orders at the queue, influencing supply lead times. In addition, the inventory behavior is impacted by the correlation between demand and lead times: a large demand size corresponds to a long lead time, depleting the inventory longer. The contribution of this paper is threefold. First, we present an exact procedure based on matrix‐analytic techniques for computing the replenishment lead time distribution given an arbitrary discrete demand distribution. Second, we numerically characterize the distribution of inventory levels, and various other performance measures such as fill rate, base‐stock levels and optimal safety stocks, taking the correlation between demand and lead times into account. Third, we develop an algorithm to fit the first two moments of the demand and service time distribution to a discrete phase‐type distribution with a minimal number of phases. This provides a practical tool to analyze the effect of demand variability, as measured by its coefficient of variation, on system performance. We also show that our model is more appropriate than some existing models of capacitated systems in discrete time. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

16.
Discrete‐time queues with D‐MAP arrival process are more useful in modeling and performance analysis of telecommunication networks based on the ATM environment. This paper analyzes a finite‐buffer discrete‐time queue with general bulk‐service rule, wherein the arrival process is D‐MAP and service times are arbitrarily and independently distributed. The distributions of buffer contents at various epochs (departure, random, and prearrival) have been obtained using imbedded Markov chain and supplementary variable methods. Finally, some performance measures such as loss probability and average delay are discussed. Numerical results are also presented in some cases. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 345–363, 2003.  相似文献   

17.
A model of an M/M/1, bulk queue with service rates dependent on the batch size is developed. The operational policy is to commence service when at least L customers are available with a maximum batch size of K. Arriving customers are not allowed to join in-process service. The solution procedure utilizes the matrix geometric methodology and reduces to obtaining the inverse of a square matrix of dimension K + 1 - L. For the case where the service rates are not batch size dependent, the limiting probabilities can be written in closed form. A numerical example illustrates the variability of the system cost as a function of the minimum batch service size L.  相似文献   

18.
The output of the queueing system M/M/1 is well known to be Poisson. This has also been shown to be true for other more general models inclusive of M/Mn/1; the system in which arrivals and epochs of service completion are elements of a birth and death process with parameters Λ and nμ, respectively, when the system contains n ≥ 1 customers. We shall here show that this result is not true in MnM/1; a system where arrival parameter is state dependent quantity Λ/n+1. Expressions will be given for the steady state joint density of two consecutive output intervals as well as the coefficient of correlation between them.  相似文献   

19.
Consider a distributed system where many gatekeepers share a single server. Customers arrive at each gatekeeper according to independent Poisson processes with different rates. Upon arrival of a new customer, the gatekeeper has to decide whether to admit the customer by sending it to the server, or to block it. Blocking costs nothing. The gatekeeper receives a reward after a customer completes the service, and incurs a cost if an admitted customer finds a busy server and therefore has to leave the system. Assuming an exponential service distribution, we formulate the problem as an n‐person non‐zero‐sum game in which each gatekeeper is interested in maximizing its own long‐run average reward. The key result is that each gatekeeper's optimal policy is that of a threshold type regardless what other gatekeepers do. We then derive Nash equilibria and discuss interesting insights. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 702–718, 2003.  相似文献   

20.
This article investigates optimal static prices for a finite capacity queueing system serving customers from different classes. We first show that the original multi‐class formulation in which the price for each class is a decision variable can be reformulated as a single dimensional problem with the total load as the decision variable. Using this alternative formulation, we prove an upper bound for the optimal arrival rates for a fairly large class of queueing systems and provide sufficient conditions that ensure the existence of a unique optimal arrival rate vector. We show that these conditions hold for M/M/1/m and M/G/s/s systems and prove structural results on the relationships between the optimal arrival rates and system capacity. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号