首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive Materials (RMs), a new material with structural and energy release characteristics under shock-induced chemical reactions, are promising in extensive applications in national defense and military fields. They can increase the lethality of warheads due to their dual functionality. This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading. Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs, temperature distribution, peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material (RM) warhead casings by using high-speed camera, infrared thermal imager temperature and peak overpressure testing and scanning electron microscope. Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings. The RM casings can improve the peak overpressure of the air shock wave under explosion loading, though the results are different with different charge ratios. According to the energy release characteristics of the RM, increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave, while reducing the thickness will increase the peak overpressure of the far-field air shock wave.  相似文献   

2.
《防务技术》2020,16(1):96-106
The numerical simulation of a blast wave of a multilayer composite charge is investigated. A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is established using the AUTODYN finite element program. Results of the near-field and far-field calculations of the shock wave respectively converge at cell sizes of 0.25–0.5 cm and 1–3 cm. The Euler––flux-corrected transport solver is found to be suitable for the far-field calculation after mapping. A numerical simulation is conducted to study the formation, propagation, and interaction of the shock wave of the composite charge for different initiation modes. It is found that the initiation mode obviously affects the shock-wave waveform and pressure distribution of the composite charge. Additionally, it is found that the area of the overpressure distribution is greatest for internal and external simultaneous initiation, and the peak pressure of the shock wave exponentially decays, fitting the calculation formula of the peak overpressure attenuation under different initiation modes, which is obtained and verified by experiment. The difference between numerical and experimental results is less than 10%, and the peak overpressure of both internal and external initiation is 56.12% higher than that of central single-point initiation.  相似文献   

3.
《防务技术》2020,16(2):290-298
In order to give the energy output structure of typical explosives near-ground explosion in real ground conditions, the free-field shockwave, ground reflection shockwave and Mach wave overpressure time history of composition B explosive, RDX explosive and aluminized explosive were measured by air pressure sensors and ground pressure sensors. The shape of the free-field shock wave, ground reflection shock wave, and Mach wave and explosion flame were captured by high-speed camera. The experimental results show that, at the same horizontal distance from the initiation point, the peak overpressure of explosive shock wave of composition B explosive, both in the air and on the ground, is less than that of RDX and aluminized explosives. At a distance of 3.0 m from the initiation point, the peak overpressure of aluminized explosives is slightly less than that of RDX explosives. Owing to the exothermic effect of aluminum powder, the pressure drop of aluminized explosives is slower than that of RDX explosives. At 5.0 m from the initiation point, the peak overpressure of aluminized explosives is larger than that of RDX explosives. At the same position from the initiation point, among the three kinds of explosives, the impulse of aluminized explosives is the maximum and the impulse of composition B explosives is the minimum. With the increase of the horizontal distance from the initiation point, the height of Mach triple-points (Mach steam) of the three explosives increases gradually. At the same horizontal distance from the initiation point, there is poorly difference in the height of Mach triple-points between aluminized explosive and RDX explosive, and the height of Mach triple-points of composition B explosive is much smaller than that of other two explosives. The maximum diameter and duration of the fireball formed by aluminized explosives are the largest, followed by composition B explosive, and the maximum diameter and duration of the fireball formed by RDX explosive are the smallest.  相似文献   

4.
In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate. Metal powders' explosive properties and reaction mechanisms in FAE were studied by high-speed video, pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700 ℃, which was higher than that of the pure liquid fuels. After replacing 30%of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.  相似文献   

5.
《防务技术》2019,15(5):815-820
The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem. It is generally considered that the waveform consists of overpressure peak, positive pressure zone and negative pressure zone. Most of current practice usually considers only the positive pressure. Many empirical relations are available to predict overpressure peak, the positive pressure action time and pressure decay law. However, there are few models that can predict the whole waveform. The whole process of explosion shock wave overpressure, which was expressed as the product of the three factor functions of peak, attenuation and oscillation, was proposed in the present work. According to the principle of explosion similarity, the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure. Parametric numerical simulations of free-field air explosions were conducted. By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves, the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion. In addition, through the model the shock wave overpressure at different time and distance can be displayed in three dimensions. The model makes the time needed for theoretical calculation much less than that for numerical simulation.  相似文献   

6.
《防务技术》2022,18(9):1538-1545
3-nitro-1,2,4-tri-azol-5-one (NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1 (32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity (7746 m/s) and the parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shock-initiation gap experiment and numerical simulation. The determined trinomial ignition and growth model (IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.  相似文献   

7.
The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined space is of great significance for military explosives safety applications. To estimate the effects of the parameters on the reflected overpressure of blasted shock wave, a series of experiments were carried out in confined containers with spherical explosives immersed in a certain thickness of water, and numerical simulations were conducted to explore the corresponding mechanisms. The results reveal that the reflected overpressure is abnormally aggravated at a small scaled distance. This aggravation is due to the high impulse of the bulk accelerated water shell converted from the explosion. With increasing scaled distance, the energy will be gradually dissipated. The mitigation effects will appear with the dispersed water phase front impacting at a larger scaled distance, except in the case of a dense water phase state. A critical scaled distance range of 0.7—0.8 m/kg1/3 for effective mitigation was found. It is suggested that the scaled distance of space walls should be larger than the critical value for a certain water-to-explosive weight ratio range (5—20).  相似文献   

8.
UHMWPE复合材料抗爆实验研究   总被引:1,自引:0,他引:1  
运用定制的聚偏四氟乙烯(PVDF)压电传感器,直接测量爆炸载荷下UHMWPE层叠无纬布和PU基体的UHMWPE复合材料内部冲击波压力峰值,对其冲击波衰减特性进行了实验研究。实验结果表明:UHMWPE复合材料对爆炸冲击波有很好的衰减作用,含有PU基体的UHMWPE复合材料比UHMWPE层叠无纬布对爆炸冲击波有更好的衰减效果。UHMWPE复合材料具有轻质、吸收冲击波效率高等特性,在爆炸冲击波防护领域有很好的应用前景。  相似文献   

9.
为了研究导弹战斗部(柱壳装药)在破片场中的累积毁伤问题,在现有单破片起爆平板装药的Jacobs-Roslund经验准则的基础上,分别建立了考虑破片尺寸、破片撞击角度、柱壳装药的装药半径和壳体厚度的单球破片、双球破片冲击柱壳装药临界起爆条件的工程分析模型.该模型计算结果与数值模拟结果和现有试验结果相吻,证明利用该模型能较...  相似文献   

10.
进行了两类压剪加载实验:(1)利用石英的平面正碰撞产生压剪加载的实验,采用电磁质速法测试装药试件内部不同质点的运动情况,分析炸药装药中发生化学反应的可能性;(2)在压剪炮上采用平行倾斜碰撞产生压剪加载的实验,观测炸药装药爆炸的可能性。由实验可以看出:在亚爆轰状态的压缩加载应力条件下,剪切的联合作用对炸药的起爆起到敏化作用,适当比例的压剪加载造成更加敏感的炸药起爆响应。文中给出了起爆响应规律和响应机制的实验分析。  相似文献   

11.
《防务技术》2022,18(10):1834-1841
In the study, the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH2 powders. The experimental results showed that the introduction of TiH2 powders could significantly increase the explosion temperature and fireball duration of emulsion explosive. When emulsion explosives were ignited, the average explosion temperature of pure emulsion explosive continuously decreased while emulsion explosives added with TiH2 powders increased at first and then decreased. When the content of TiH2 powders was 6 mass%, the explosion average temperature reached its maximum value of 3095 K, increasing by 43.7% as compared with that of pure emulsion explosive. In addition, the results of air blast experiment and explosion heat test showed that the variation trends of shock wave parameters, explosion heat and theoretical explosion temperature of emulsion explosives with different contents of TiH2 powders were basically consistent with that of explosion temperature measured by the two-color pyrometer technique. In conclusion, the two-color pyrometer technique would be conducive to the formula design of emulsion explosive by understanding the explosion temperature characteristics.  相似文献   

12.
《防务技术》2022,18(10):1863-1874
The research of LEFP (linear explosive forming projectile) is of great value to the development of new warhead due to its excellent performance. To further improve the damage ability of the shaped charge warhead, a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge, in which case the crushing energy of LEFP could be guaranteed. LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points, the length of shell platform, the radius of curvature and the thickness of liner. The RSM (response surface model) between the molding parameters of LEFP and the structural parameters of charge was established. Based on RSM model, the structure of shaped charge was optimized by using multi-objective genetic algorithm. Meanwhile, the formation process of jet was analyzed by pulsed X-ray photography. The results show that the velocity, length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge. After the optimization of charge structure, the forming effect and penetration ability of LEPP had been significantly improved. The experimental data of jet velocity and length were consistent with the numerical results, which verifies the reliability of the numerical results.  相似文献   

13.
对模拟油罐内油气混合物爆炸冲击波特性进行了研究.在直径为1 m的模拟油罐中进行了油气混合物爆炸模拟实验,建立了模拟油罐油气混合物爆炸的数值仿真模型,并借助大型商业软件Fluent6.2完成了数值仿真研究.数值仿真结果与实验值较为吻合.模拟实验和数值仿真研究的结果表明:油气体积分数、罐内初始温度等决定模拟油罐油气混合物爆炸压力的大小.油罐内爆炸压力波的振荡特性对金属油罐结构来说是有害的.  相似文献   

14.
A new type of explosive ink formulation that can be quickly cured was prepared with unsaturated polyester as binder,styrene as active monomer,2,4,6-trimethylbenzoyl-diphenylphosphine oxide as photoinitiator,and hexanitrohexaazaisowurtzitane (CL-20) as the main explosive.Then the explosive ink direct writing technology was used to charge the micro-sized energetic devices,the curing mechanism of the explosive ink was discussed,and the microstructure,safety performance and explosive transfer performance of the explosive ink molded samples were tested and analyzed.Results indicate that the composite material has a fast curing molding speed,its hardness can reach 2H within 8 min.The crystal form of CL-20 in the molded sample is still ε type.The CL-20 based W-curing explosive ink formulation has good compatibility,its apparent activation energy is increased by about 3.5 kJ/mol.The composite presents a significant reduction in impact sensitivity and its characteristic drop height can reach 39.8 cm,which is about 3 times higher than the raw material.When the line width of charge is 1.0 mm,the critical thickness of the explosion can reach 0.015 mm,and the explosion velocity is 7129 m/s when the charge density is 1.612 g/cm3.  相似文献   

15.
Shockwaves from fuel-air explosive (FAE) cloud explosions may cause significant casualties. The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves. In this paper, a finite element model of multi-sources FAE explosion is established to simulate the process of multiple shockwaves propagation and interaction. The model is verified with the experimental data of a fourfold-source FAE explosion, with the total fuel mass of 340 kg. Simulation results show that the overpressure fields of multi-sources FAE explosions are different from that of the single-source. In the case of multi-sources, the overpressure fields are influenced significantly by source scattering distance and source number. Subsequently, damage ranges of overpressure under three different levels are calculated. Within a suitable source scattering distance, the damage range of multi-sources situation is greater than that of the single-source, under the same amount of total fuel mass. This research provides a basis for personnel shockwave protection from multi-sources FAE explosion.  相似文献   

16.
Liquid-filled compartment structure consists of a bulk steel plate with matrix blind holes which are filled with liquid and a steel front plate to seal up the liquid with rings and bolts.The liquid-filled compart-ment structure can resist the shaped charge warhead effectively.This paper presents experimental and theoretical investigations of the penetration ability of the residual shaped charge jet emerging from the liquid-filled compartment structure after the penetration process at different impact angles.On the basis of shock wave propagation theory,the influence of the liquid-filled compartment structure on jet sta-bility is analysed.The interferences of the liquid backflow caused by a reflected shock wave and a back plate on jet stability under different impact angles are also examined.In addition,the range of the disturbed velocity segments of the jet at different impact angles and the penetration ability of the re-sidual jet are obtained.A theoretical model is validated against the experimental penetration depths.  相似文献   

17.
The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound structures were used as barriers to weaken the blast loads.A comprehensive experiment using a high-speed camera and image processing techniques,side witness plates,and bottom witness plates was presented.Using the experimental fragment velocities,fragment piercing patterns,and damage characteristics,the reaction degree of the explosive impeded by different multi-layered com-pound structures could be precisely differentiated.Reaction parameters of the explosive obstructed by compound structures were obtained by theoretical analysis and numerical simulations.Unlike the common method in which the explosive reaction degree is only distinguished based on the initial pressure amplitude transmitted into the explosive,a following shock wave reflected from the side steel casing was also considered.Different detonation growth paths in the explosive formed.Therefore,all these shock wave propagation characteristics must be considered to analyze the explosive response impeded by compound structures.  相似文献   

18.
Guo-qiang Deng  Xiao Yu 《防务技术》2021,17(4):1461-1470
When considering the bomb explosion damage effect, the air shock wave and high-speed fragments of the bomb case are two major threats. In experiments, the air shock wave was studied by the bare ex-plosives superseding the real cased bomb; in contrast, the bomb case influence was ignored to reduce risk. The air explosion simulations of the MK84 warhead with and without the case were conducted. The numerical simulation results showed that the bomb case significantly influenced the shock wave generated by the bomb: the spatial distribution of shock wave in the near field changed, and the peak value of shock wave was reduced. Breakage of the case and kinetic energy of the fragmentation consumed 3 and 38% of the explosion energy, respectively. The increasing factors of the peak over-pressure induced by the bare explosive on the ground and in the air were 1.43-3.04 and 1.37-1.57, respectively. Four typical stages of case breakage were defined. The mass distribution of the fragments follows the Mott distribution. The initial velocity distribution of the fragments agreed well with the Gurney equation.  相似文献   

19.
数值模拟了爆炸激波管不同隔离段长度时管口稀疏波对试验段超压的影响。为了准确高效地模拟试验段入口的超压曲线,采用了一种将一维球对称程序和三维程序相结合的计算方法,并在一维计算中利用爆炸相似律,采用小当量爆炸来模拟实际超压波形。计算结果表明,隔离段长度L的变化不影响超压峰值;L小于等于20m时,稀疏波的影响使得试验段超压的作用时间、比冲量减小;L大于等于30m时,稀疏波对试验段超压无影响。  相似文献   

20.
The formation mechanism of an EFP(explosively formed projectile) using a double curvature liner under the overpressure effect generated by a regular oblique reflection was investigated in this paper.Based on the detonation wave propagation theory,the change of the incident angle of the detonation wave collision at different positions and the distribution area of the overpressure on the surface of the liner were calculated.Three-dimensional numerical simulations of the formation process of the EFP with tail as well as the ability to penetrate 45# steel were performed using LS-DYNA software,and the EFP ve-locity,the penetration ability,and the forming were assessed via experiments and x-ray photographs.The experimental results coincides with those of the simulations.Results indicate that the collision of the detonation wave was controlled to be a regular oblique reflection acting on the liner by setting the di-mensions of the unit charge and maintaining the pressure at the collision point region at more than 2.4 times the CJ detonation when the incident angle approached the critical angle.The distance from the liner midline to the boundary of the area within which the pressure ratio of the regular oblique reflection pressure to the CJ detonation pressure was greater than 2.5,2,and 1.5was approximately 0.66 mm,1.32 mm,and 3.3 mm,respectively.It is noted that pressure gradient caused the liner to turn inside out in the middle to form the head of the EFP and close the two tails of the EFP at approximately 120μs.The penetration depth of the EFP into a 45# steel target exceeded 30 mm,and there was radial expansion between the head and tail of the EFE increasing the penetration resistance of the EFP.Therefore,the structural size of the unit charge and the liner can be further optimized to reduce resistance to increase the penetration ability of the EFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号