首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

2.
By running life tests at higher stress levels than normal operating conditions, accelerated life testing (ALT) quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant‐stress testing, a unit is tested at a fixed stress level until failure or the termination time point of test, whereas step‐stress testing allows the experimenter to gradually increase the stress levels at some prefixed time points during the test. In this work, the optimal k‐level constant‐stress and step‐stress ALTs are compared for the exponential failure data under complete sampling and Type‐I censoring. The objective is to quantify the advantage of using the step‐stress testing relative to the constant‐stress one. Assuming a log‐linear life–stress relationship with the cumulative exposure model for the effect of changing stress in step‐stress testing, the optimal design points are determined under C/D/A‐optimality criteria. The efficiency of step‐stress testing to constant‐stress one is then discussed in terms of the ratio of optimal objective functions based on the information matrix. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2013  相似文献   

3.
In this article, an integral equation satisfied by the second moment function M2(t) of a geometric process is obtained. The numerical method based on the trapezoidal integration rule proposed by Tang and Lam for the geometric function M(t) is adapted to solve this integral equation. To illustrate the numerical method, the first interarrival time is assumed to be one of four common lifetime distributions, namely, exponential, gamma, Weibull, and lognormal. In addition to this method, a power series expansion is derived using the integral equation for the second moment function M2(t), when the first interarrival time has an exponential distribution.  相似文献   

4.
《防务技术》2020,16(2):392-400
The optocoupler is a weak link in the inertial navigation platform of a kind of guided munitions. It is necessary to use accelerated storage test to verify the storage life of long storage products. Especially for small sample products, it is very important to obtain prior information for the design and implementation of accelerated degradation test. In this paper, the optocoupler failure mechanism verification test is designed and the experimental results are analyzed and the prior information is obtained. The results show that optocouplers have two failure modes, one is sudden failure and the other is degradation failure; the maximum temperature stress of optocoupler can't exceed 140 °C; the increase of leakage current of optocoupler is caused by movable ions contaminating the LED chip. The surface leakage current is proportional to the adsorption amount. The increase of leakage current makes p-n junction tunneling effect occur which LEDs the failure of the optocoupler. The lifetime distribution model of the optocoupler is determined by the failure physics. The lifetime of the optocoupler is subject to the lognormal distribution. The degeneracy orbit of the optocoupler leakage current is described by a power law model. The estimated values of the orbital parameters are initially calculated and the parameters of its life distribution function are deduced. The above information lays a good foundation for the optimization design and data processing of the accelerated degradation experiment.  相似文献   

5.
Today, many products are designed and manufactured to function for a long period of time before they fail. Determining product reliability is a great challenge to manufacturers of highly reliable products with only a relatively short period of time available for internal life testing. In particular, it may be difficult to determine optimal burn‐in parameters and characterize the residual life distribution. A promising alternative is to use data on a quality characteristic (QC) whose degradation over time can be related to product failure. Typically, product failure corresponds to the first passage time of the degradation path beyond a critical value. If degradation paths can be modeled properly, one can predict failure time and determine the life distribution without actually observing failures. In this paper, we first use a Wiener process to describe the continuous degradation path of the quality characteristic of the product. A Wiener process allows nonconstant variance and nonzero correlation among data collected at different time points. We propose a decision rule for classifying a unit as normal or weak, and give an economic model for determining the optimal termination time and other parameters of a burn‐in test. Next, we propose a method for assessing the product's lifetime distribution of the passed units. The proposed methodologies are all based only on the product's initial observed degradation data. Finally, an example of an electronic product, namely contact image scanner (CIS), is used to illustrate the proposed procedure. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

6.
为了进一步提升设备维修决策的科学性,通过建立综合设备剩余寿命预测数据与不确定失效阈值的最优维修决策模型,实现了不可维修设备的最优替换策略。构建基于非线性Wiener过程的设备性能退化模型,并采用极大似然法估计退化模型参数;提出一种基于期望最大(Expectation Maximization, EM)算法的不确定失效阈值分布系数估计方法,通过引入虚拟失效阈值数据实现对失效阈值分布系数的同步迭代更新;基于首达时的概念推导出不确定失效阈值条件下设备剩余寿命的概率密度函数,并基于更新报酬理论建立维修决策模型,从而实现设备的最优维修决策。算例分析表明,设备的失效阈值会对维修决策结果产生重要影响,考虑设备失效阈值的不确定性既有助于提升剩余寿命预测的准确性,又可以有效降低设备的寿命周期费用。  相似文献   

7.
针对广泛存在的非线性退化设备,现有方法尚未考虑随机失效阈值对剩余寿命预测结果的影响。因此,通过对设备性能退化过程进行分析,提出了一种综合考虑非线性退化与随机失效阈值的剩余寿命预测方法。基于Wiener过程构建了考虑个体差异与测量误差的非线性退化模型;基于卡尔曼滤波算法建立状态空间模型以实现对退化状态的在线更新;基于极大似然法估计失效阈值分布系数估计方法,得到随机失效阈值的概率分布;基于随机失效阈值推导出剩余寿命的概率分布,实现对剩余寿命的在线预测。算例研究表明,所提方法可以有效地提升剩余寿命预测的准确性,具备一定工程应用价值。  相似文献   

8.
We consider a partially observable degrading system subject to condition monitoring and random failure. The system's condition is categorized into one of three states: a healthy state, a warning state, and a failure state. Only the failure state is observable. While the system is operational, vector data that is stochastically related to the system state is obtained through condition monitoring at regular sampling epochs. The state process evolution follows a hidden semi‐Markov model (HSMM) and Erlang distribution is used for modeling the system's sojourn time in each of its operational states. The Expectation‐maximization (EM) algorithm is applied to estimate the state and observation parameters of the HSMM. Explicit formulas for several important quantities for the system residual life estimation such as the conditional reliability function and the mean residual life are derived in terms of the posterior probability that the system is in the warning state. Numerical examples are presented to demonstrate the applicability of the estimation procedure and failure prediction method. A comparison results with hidden Markov modeling are provided to illustrate the effectiveness of the proposed model. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 190–205, 2015  相似文献   

9.
A framework involving independent competing risks permits observing failures due to a specific cause and failures due to a competing cause, which constitute survival times from the cause of primary interest. Is observing more failures more informative than observing survivals? Intuitively, due to the definitiveness of failures, the answer seems to be the former. However, it has been shown before that this intuition holds when estimating the mean but not the failure rate of the exponential model with a gamma prior distribution for the failure rate. In this article, we address this question at a more general level. We show that for a certain class of distributions failures can be more informative than survivals for prediction of life length and vice versa for some others. We also show that for a large class of lifetime models, failure is less informative than survival for estimating the proportional hazards parameter with gamma, Jeffreys, and uniform priors. We further show that, for this class of lifetime models, on average, failure is more informative than survival for parameter estimation and for prediction. These results imply that the inferential purpose and properties of the lifetime distribution are germane for conducting life tests. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

10.
把结构系统动力可靠性分析与最优化设计结合起来 ,以结构系统的最小质量为目标函数 ,给出了考虑在平稳随机过程激励下多自由度线性系统总的可靠性的结构优化设计方法。运用谱分析理论 ,推导了结构系统在平稳随机过程激励下响应的统计特征 ,同时结合首次超越破坏的Possion模型计算结构系统的可靠性 ,最终采用广义乘子法得到结构系统设计变量的最优值。计算结果表明该方法是可行的  相似文献   

11.
This paper introduces a general or “distribution‐free” model to analyze the lifetime of components under accelerated life testing. Unlike the accelerated failure time (AFT) models, the proposed model shares the advantage of being “distribution‐free” with the proportional hazard (PH) model and overcomes the deficiency of the PH model not allowing survival curves corresponding to different values of a covariate to cross. In this research, we extend and modify the extended hazard regression (EHR) model using the partial likelihood function to analyze failure data with time‐dependent covariates. The new model can be easily adopted to create an accelerated life testing model with different types of stress loading. For example, stress loading in accelerated life testing can be a step function, cyclic, or linear function with time. These types of stress loadings reduce the testing time and increase the number of failures of components under test. The proposed EHR model with time‐dependent covariates which incorporates multiple stress loadings requires further verification. Therefore, we conduct an accelerated life test in the laboratory by subjecting components to time‐dependent stresses, and we compare the reliability estimation based on the developed model with that obtained from experimental results. The combination of the theoretical development of the accelerated life testing model verified by laboratory experiments offers a unique perspective to reliability model building and verification. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 303–321, 1999  相似文献   

12.
Accelerated life testing (ALT) is concerned with subjecting items to a series of stresses at several levels higher than those experienced under normal conditions so as to obtain the lifetime distribution of items under normal levels. A parametric approach to this problem requires two assumptions. First, the lifetime of an item is assumed to have the same distribution under all stress levels, that is, a change of stress level does not change the shape of the life distribution but changes only its scale. Second, a functional relationship is assumed between the parameters of the life distribution and the accelerating stresses. A nonparametric approach, on the other hand, assumes a functional relationship between the life distribution functions at the accelerated and nonaccelerated stress levels without making any assumptions on the forms of the distribution functions. In this paper, we treat the problem nonparametrically. In particular, we extend the methods of Shaked, Zimmer, and Ball [7] and Strelec and Viertl [8] and develop a nonparametric estimation procedure for a version of the generalized Arrhenius model with two stress variables assuming a linear acceleration function. We obtain consistent estimates as well as confidence intervals of the parameters of the life distribution under normal stress level and compare our nonparametric method with parametric methods assuming exponential, Weibull and lognormal life distributions using both real life and simulated data. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 629–644, 1998  相似文献   

13.
We consider optimal test plans involving life distributions with failure‐free life, i.e., where there is an unknown threshold parameter below which no failure will occur. These distributions do not satisfy the regularity conditions and thus the usual approach of using the Fisher information matrix to obtain an optimal accelerated life testing (ALT) plan cannot be applied. In this paper, we assume that lifetime follows a two‐parameter exponential distribution and the stress‐life relationship is given by the inverse power law model. Near‐optimal test plans for constant‐stress ALT under both failure‐censoring and time‐censoring are obtained. We first obtain unbiased estimates for the parameters and give the approximate variance of these estimates for both failure‐censored and time‐censored data. Using these results, the variance for the approximate unbiased estimate of a percentile at a design stress is computed and then minimized to produce the near‐optimal plan. Finally, a numerical example is presented together with simulation results to study the accuracy of the approximate variance given by the proposed plan and show that it outperforms the equal‐allocation plan. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 169–186, 1999  相似文献   

14.
Accelerated life testing (ALT) using multiple stresses is commonly used in practice to resemble the operating stresses at normal operating conditions and obtain failure observations in a much shorter time. However, to date, there is little research into the theory of planning ALT for reliability estimation with multiple stresses. ALT with multiple stresses can result in a large number of stress‐level combinations which presents a challenge for implementation. In this article, we propose an approach for the design of ALT plans with multiple stresses and formulate multistress test plans based on different objectives and practical constraints. We develop a simulated annealing algorithm to efficiently determine the testing plan parameters. We demonstrate the proposed method with examples based on an actual test conducted using three stress types. The obtained optimal test plans are compared with those based on fractional factorial design. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 468–478, 2013  相似文献   

15.
将模糊理论应用于基于Dirichlet先验分布的Bayes可靠性增长模型,提出了可靠性增长的模糊模型。在对Dirichlet先验分布函数研究的基础上,分析了先验参数的获取方法。针对某水冲压发动机可靠性增长试验使用Dirichlet先验分布模型进行了分析,给出了试验各阶段的先验分布和后验分布,并分析了与先验信息方差有关的参数对后验可靠度的影响。在此基础上,通过引入模糊变量,发展了模糊可靠性增长模型,得到了试验各阶段模糊可靠度。  相似文献   

16.
An age‐dependent repair model is proposed. The notion of the “calendar age” of the product and the degree of repair are used to define the virtual age of the product. The virtual failure rate function and the virtual hazard function related to the lifetime of the product are discussed. Under a nonhomogeneous Poisson process scenario the expected warranty costs for repairable products associated with linear pro‐rata, nonrenewing free replacement and renewing free replacement warranties are evaluated. Illustration of the results is given by numerical and graphical examples. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

17.
涡轮盘是航空发动机主要部件之一,一旦发生破坏性故障将导致严重的后果。在充分考虑影响涡轮盘高低周复合疲劳寿命因素不确定性基础上,以MATLAB为平台,设计了涡轮盘高低周复合疲劳寿命可靠性优化设计的联合仿真平台。利用寿命函数和寿命可靠性分析极限状态函数中的共性需求,提出了在优化迭代的过程中自适应构建寿命函数Kriging模型和寿命可靠性极限状态面Kriging模型时共用训练样本点的策略。同时,提出了一种构建寿命函数Kriging模型的学习函数。使用所搭建的疲劳寿命可靠性优化设计平台,完成了某型涡轮盘盘心、榫槽以及涡轮盘系统高低周复合疲劳寿命的可靠性优化设计。结果表明,最优设计方案的局部最大应力显著降低,均值寿命大幅提高,并满足可靠性约束。  相似文献   

18.
混合指数分布模型的Bayes分析   总被引:2,自引:0,他引:2       下载免费PDF全文
针对截尾试验数据的情况,给出了二元混合指数分布模型的平均寿命和可靠性函数的严格的Bayes点估计,并运用最大熵准则给出了可靠性函数的近似的Bayes置信下限估计。  相似文献   

19.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we consider the problem of determining bounds to the optimal burn‐in time and optimal replacement policy maximizing the steady state availability of a repairable system. It is assumed that two types of system failures may occur: One is Type I failure (minor failure), which can be removed by a minimal repair, and the other is Type II failure (catastrophic failure), which can be removed only by a complete repair. Assuming that the underlying lifetime distribution of the system has a bathtub‐shaped failure rate function, upper and lower bounds for the optimal burn‐in time are provided. Furthermore, some other applications of optimal burn‐in are also considered. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

20.
This article presents new tools and methods for finding optimum step‐stress accelerated life test plans. First, we present an approach to calculate the large‐sample approximate variance of the maximum likelihood estimator of a quantile of the failure time distribution at use conditions from a step‐stress accelerated life test. The approach allows for multistep stress changes and censoring for general log‐location‐scale distributions based on a cumulative exposure model. As an application of this approach, the optimum variance is studied as a function of shape parameter for both Weibull and lognormal distributions. Graphical comparisons among test plans using step‐up, step‐down, and constant‐stress patterns are also presented. The results show that depending on the values of the model parameters and quantile of interest, each of the three test plans can be preferable in terms of optimum variance. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号