首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a partially observable degrading system subject to condition monitoring and random failure. The system's condition is categorized into one of three states: a healthy state, a warning state, and a failure state. Only the failure state is observable. While the system is operational, vector data that is stochastically related to the system state is obtained through condition monitoring at regular sampling epochs. The state process evolution follows a hidden semi‐Markov model (HSMM) and Erlang distribution is used for modeling the system's sojourn time in each of its operational states. The Expectation‐maximization (EM) algorithm is applied to estimate the state and observation parameters of the HSMM. Explicit formulas for several important quantities for the system residual life estimation such as the conditional reliability function and the mean residual life are derived in terms of the posterior probability that the system is in the warning state. Numerical examples are presented to demonstrate the applicability of the estimation procedure and failure prediction method. A comparison results with hidden Markov modeling are provided to illustrate the effectiveness of the proposed model. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 190–205, 2015  相似文献   

2.
In this paper, a condition-based maintenance model for a multi-unit production system is proposed and analyzed using Markov renewal theory. The units of the system are subject to gradual deterioration, and the gradual deterioration process of each unit is described by a three-state continuous time homogeneous Markov chain with two working states and a failure state. The production rate of the system is influenced by the deterioration process and the demand is constant. The states of the units are observable through regular inspections and the decision to perform maintenance depends on the number of units in each state. The objective is to obtain the steady-state characteristics and the formula for the long-run average cost for the controlled system. The optimal policy is obtained using a dynamic programming algorithm. The result is validated using a semi-Markov decision process formulation and the policy iteration algorithm. Moreover, an analytical expression is obtained for the calculation of the mean time to initiate maintenance using the first passage time theory.  相似文献   

3.
Burn‐in procedure is a manufacturing technique that is intended to eliminate early failures of system or product. Burning‐in a component or system means to subject it to a period of use prior to being used in field. Generally, burn‐in is considered expensive and so the length of burn‐in is typically limited. Thus, burn‐in is most often accomplished in an accelerated environment in order to shorten the burn‐in process. A new failure rate model for an accelerated burn‐in procedure, which incorporates the accelerated ageing process induced by the accelerated environmental stress, is proposed. Under a more general assumption on the shape of failure rate function of products, which includes the traditional bathtub‐shaped failure rate function as a special case, upper bounds for optimal burn‐in time will be derived. A numerical example will also be given for illustration. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

4.
In this article, a model for a repairable consecutive‐k‐out‐of‐n: F system with Markov dependence is studied. A binary vector is used to represent the system state. The failure rate of a component in the system depends on the state of the preceding component. The failure risk of a system state is then introduced. On the basis of the failure risk, a priority repair rule is adopted. Then the transition density matrix can be determined, and the analysis of the system reliability can be conducted accordingly. One example each of a linear and a circular system is then studied in detail to explain the model and methodology developed in this paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 18–39, 2000  相似文献   

5.
We study optimal age‐replacement policies for machines in series with non‐instantaneous repair times by formulating two nonlinear programs: one that minimizes total cost‐rate subject to a steady‐state throughput requirement and another that maximizes steady‐state throughput subject to a cost‐rate budget constraint. Under reasonable assumptions, the single‐machine cost‐optimal and throughput‐optimal solutions are unique and orderable, and the multi‐machine optimal solutions have appealing structure. Furthermore, we establish equivalence between the two formulations and provide an illustrative numerical example. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

6.
In this paper, we consider a situation in which a group of facilities must be constructed in order to serve a given set of customers, where the facilities might not be able to guarantee an absolute coverage to the different customers. We examine the problem of maximizing the total service reliability of the system subject to a budgetary constraint. We propose a new reformulation of this problem that facilitates the generation of tight lower and upper bounds. These bounding mechanisms are embedded within the framework of a branch‐and‐bound procedure. Computational results on problem instances ranging in size up to 100 facilities and 200 customers reveal the efficacy of the proposed exact and heuristic approaches. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

7.
This paper proposes a new model that generalizes the linear consecutive k‐out‐of‐r‐from‐n:F system to multistate case with multiple failure criteria. In this model (named linear multistate multiple sliding window system) the system consists of n linearly ordered multistate elements (MEs). Each ME can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. Several functions are defined for a set of integer numbers ρ in such a way that for each r ∈ ρ corresponding function fr produces negative values if the combination of performance rates of r consecutive MEs corresponds to the unacceptable state of the system. The system fails if at least one of functions fr for any r consecutive MEs for r ∈ ρ produces a negative value. An algorithm for system reliability evaluation is suggested which is based on an extended universal moment generating function. Examples of system reliability evaluation are presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

8.
We consider a stochastic partially observable system that can switch between a normal state and a transient abnormal state before entering a persistent abnormal state. Only the persistent abnormal state requires alarms. The transient and persistent abnormal states may be similar in appearance, which can result in excess false alarms. We propose a partially observable Markov decision process model to minimize the false alarm rate, subject to a given upper bound on the expected alarm delay time. The cost parameter is treated as the Lagrange multiplier, which can be estimated from the bound of the alarm delay. We show that the optimal policy has a control‐limit structure on the probability of persistent abnormality, and derive closed‐form bounds for the control limit and present an algorithm to specify the Lagrange multiplier. We also study a specialized model where the transient and persistent abnormal states have the same observation distribution, in which case an intuitive “watchful‐waiting” policy is optimal. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 320–334, 2016  相似文献   

9.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we consider the problem of determining bounds to the optimal burn‐in time and optimal replacement policy maximizing the steady state availability of a repairable system. It is assumed that two types of system failures may occur: One is Type I failure (minor failure), which can be removed by a minimal repair, and the other is Type II failure (catastrophic failure), which can be removed only by a complete repair. Assuming that the underlying lifetime distribution of the system has a bathtub‐shaped failure rate function, upper and lower bounds for the optimal burn‐in time are provided. Furthermore, some other applications of optimal burn‐in are also considered. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

10.
The paper considers the economic lot scheduling problem (ELSP) where production facility is assumed to deteriorate, owing to aging, with an increasing failure rate. The time to shift from an “in‐control” state to an “out‐of‐control” state is assumed to be normally distributed. The system is scheduled to be inspected at the end of each production lot. If the process is found to be in an “out‐of‐control” state, then corrective maintenance is performed to restore it to an “in‐control” state before the start of the next production run. Otherwise, preventive maintenance is carried out to enhance system reliability. The ELSP is formulated under the capacity constraint taking into account the quality related cost due to possible production of non‐conforming items, process inspection, and maintenance costs. In order to find a feasible production schedule, both the common cycle and time‐varying lot sizes approaches are utilized. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 650–661, 2003  相似文献   

11.
We consider the single server Markovian queue subject to Poisson generated catastrophes. Whenever a catastrophe occurs, all customers are forced to abandon the system, the server is rendered inoperative and an exponential repair time is set on. During the repair time new arrivals are allowed to join the system. We assume that the arriving customers decide whether to join the system or balk, based on a natural linear reward‐cost structure with two types of rewards: A (usual) service reward for those customers that receive service and a (compensation) failure reward for those customers that are forced to abandon the system due to a catastrophe. We study the strategic behavior of the customers regarding balking and derive the corresponding (Nash) equilibrium strategies for the observable and unobservable cases. We show that both types of strategic behavior may be optimal: to avoid the crowd or to follow it. The crucial factor that determines the type of customer behavior is the relative value of the service reward to the failure compensation. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

12.
We consider the scheduling problem in a make‐to‐stock queue with two demand classes that can be differentiated based on their variability. One class experiences Poisson arrivals and the other class experiences hyperexponential renewal arrivals. We provide an exact analysis of the case where the demand class with higher variability is given non‐preemptive priority. The results are then used to compare the inventory cost performance of three scheduling disciplines, first‐come first‐serve and priority to either class. We then build on an existing dynamic scheduling heuristic to propose a modification that works well for our system. Extensions of the heuristic to more than two classes and to the case where demand state is known are also discussed. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

13.
针对多用户OFDMA系统,提出了一种基于遗传模拟退火算法的多用户OFDMA系统资源分配策略。在资源分配时,首先假设总功率在载波间均等分配,随后根据比例速率要求确定每个用户需要的子带数,最后引入遗传模拟退火算法求解联合优化中的子带分配,在保证用户间公平性的前提下最大化系统吞吐量。仿真结果表明,该策略系统容量较大,并且近似满足了不同用户间传输速率比例性要求。  相似文献   

14.
现代高炮武器系统在对红外目标进行连续性高炮射击时,首发弹丸的尾焰会对红外观测系统造成严重干扰,会导致红外观测系统短时间内无法观测到目标位置,带来后续弹丸无法精确打击目标等问题。利用红外图像分析技术通过对弹丸出膛时的红外图像特征进行分析,提出了一种基于红外图像分析的弹丸出膛时刻检测算法,从而相对精确地测定出首发弹丸的出膛时刻,为更精确测定弹飞时间和提高武器系统的命中率提供了理论依据和方法支撑。实验结果表明:提出的算法能够相对精确地测定弹丸出膛时刻,算法具有一定的可行性和有效性。  相似文献   

15.
The (standard) randomization method is an attractive alternative for the transient analysis of continuous time Markov models. The main advantages of the method are numerical stability, well‐controlled computation error, and ability to specify the computation error in advance. However, the fact that the method can be computationally very expensive limits its applicability. In this paper, we develop a new method called split regenerative randomization, which, having the same good properties as standard randomization, can be significantly more efficient. The method covers reliability‐like models with a particular but quite general structure and requires the selection of a subset of states and a regenerative state satisfying some conditions. For a class of continuous time Markov models, model class C2, including typical failure/repair reliability‐like models with exponential failure and repair time distributions and deferred repair, natural selections are available for both the subset of states and the regenerative state and, for those natural selections, theoretical results are available assessing the efficiency of the method in terms of “visible” model characteristics. Those results can be used to anticipate when the method can be expected to be competitive. We illustrate the application of the method using a large class C2 model and show that for models in that class the method can indeed be significantly more efficient than previously available randomization‐based methods. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

16.
为了提高风场干扰环境下飞艇的导航精度,研究飞艇抗风场干扰导航算法。在建立风场干扰条件下飞艇速度误差约束模型的基础上,设计抗风场干扰的约束Unscented卡尔曼滤波算法。首先确定风场干扰条件下飞艇的速度误差约束量,将该约束与Unscented卡尔曼滤波算法相结合,对速度误差进行估计和补偿,以减小风场对飞艇定位精度的影响;然后证明该算法的状态估计量不仅是无偏的,而且协方差小于标准UKF的协方差;最后将提出的算法应用于捷联惯导/天文/合成孔径雷达组合导航系统中进行仿真验证,并与自适应扩展卡尔曼滤波和抗差自适应UKF算法进行比较,结果表明:提出的约束UKF算法的滤波性能明显优于自适应EKF和抗差自适应UKF算法,能够有效抑制风场对飞艇定位精度的影响,提高飞艇的导航定位精度。  相似文献   

17.
针对交流伺服系统速度环控制器参数自整定及优化的需求,为使工程技术人员避免繁琐的调参过程,提出了一种基于转动惯量辨识的速度环控制器参数自整定及优化方法。首先,采用频率法分析伺服系统速度环控制器参数的设计规则;随后,采用遗忘因子递推最小二乘法,对控制器参数设计所需的系统转动惯量进行辨识;最后,在此基础上利用设计的变步长迭代算法,完成控制器参数寻优过程。仿真结果表明,采用遗忘因子递推最小二乘法,能够有效辨识出电机轴端的转动惯量。提出算法进行整定及优化后,速度环控制器参数能使系统具有良好的动态响应和鲁棒性。  相似文献   

18.
A new connection between the distribution of component failure times of a coherent system and (adaptive) progressively Type‐II censored order statistics is established. Utilizing this property, we develop inferential procedures when the data is given by all component failures until system failure in two scenarios: In the case of complete information, we assume that the failed component is also observed whereas in the case of incomplete information, we have only information about the failure times but not about the components which have failed. In the first setting, we show that inferential methods for adaptive progressively Type‐II censored data can directly be applied to the problem. For incomplete information, we face the problem that the corresponding censoring plan is not observed and that the available inferential procedures depend on the knowledge of the used censoring plan. To get estimates for distributional parameters, we propose maximum likelihood estimators which can be obtained by solving the likelihood equations directly or via an Expectation‐Maximization‐algorithm type procedure. For an exponential distribution, we discuss also a linear estimator to estimate the mean. Moreover, we establish exact distributions for some estimators in the exponential case which can be used, for example, to construct exact confidence intervals. The results are illustrated by a five component bridge system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 512–530, 2015  相似文献   

19.
The deterministic problem for finding an aircraft's optimal risk trajectory in a threat environment has been formulated. The threat is associated with the risk of aircraft detection by radars or similar sensors. The model considers an aircraft's trajectory in three‐dimensional (3‐D) space and represents the aircraft by a symmetrical ellipsoid with the axis of symmetry directing the trajectory. Analytical and discrete optimization approaches for routing an aircraft with variable radar cross‐section (RCS) subject to a constraint on the trajectory length have been developed. Through techniques of Calculus of Variations, the analytical approach reduces the original risk optimization problem to a vectorial nonlinear differential equation. In the case of a single detecting installation, a solution to this equation is expressed by a quadrature. A network optimization approach reduces the original problem to the Constrained Shortest Path Problem (CSPP) for a 3‐D network. The CSPP has been solved for various ellipsoid shapes and different length constraints in cases with several radars. The impact of ellipsoid shape on the geometry of an optimal trajectory as well as the impact of variable RCS on the performance of a network optimization algorithm have been analyzed and illustrated by several numerical examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

20.
We study a pull‐type, flexible, multi‐product, and multi‐stage production/inventory system with decentralized two‐card kanban control policies. Each stage involves a processor and two buffers with finite target levels. Production stages, arranged in series, can process several product types one at a time. Transportation of semi‐finished parts from one stage to another is performed in fixed lot sizes. The exact analysis is mathematically intractable even for smaller systems. We present a robust approximation algorithm to model two‐card kanban systems with batch transfers under arbitrary complexity. The algorithm uses phase‐type modeling to find effective processing times and busy period analysis to identify delays among product types in resource contention. Our algorithm reduces the effort required for estimating performance measures by a considerable margin and resolves the state–space explosion problem of analytical approaches. Using this analytical tool, we present new findings for a better understanding of some tactical and operational issues. We show that flow of material in small procurement sizes smoothes flow of information within the system, but also necessitates more frequent shipments between stages, raising the risk of late delivery. Balancing the risk of information delays vis‐à‐vis shipment delays is critical for the success of two‐card kanban systems. Although product variety causes time wasted in setup operations, it also facilitates relatively short production cycles enabling processors to switch from one product type to another more rapidly. The latter point is crucial especially in high‐demand environments. Increasing production line size prevents quick response to customer demand, but it may improve system performance if the vendor lead‐time is long or subject to high variation. Finally, variability in transportation and processing times causes the most damage if it arises at stages closer to the customer. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号