首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钻地武器是指携带钻地弹头又称侵彻战斗部,用于对机场跑道、地面加固目标及地下设施进行攻击的对地攻击弹药,一般由载体和侵彻战斗部组成。载体一般为巡航导弹、航空炸弹弹体及火箭、洲际弹道导弹等,其运载功能是使侵彻战斗部命中目标,并在末段达到足够的速度。侵彻战斗部由内侵彻头、高爆装药和引信组成。侵彻头一般为高强度钢或重金属合金材料,  相似文献   

2.
钻地武器是指携带钻地弹头(又称侵彻战斗部),用于对机场跑道、地面加固目标及地下设施进行攻击的对地攻击弹药,其一般由载体和侵彻战斗部组成。载体一般为巡航导弹弹体、航空炸弹弹体及火箭,甚至洲际弹道导弹等,其运载功能是使侵彻战斗部命中目标,并在末段达到足够的速度。侵彻战斗部由内侵彻弹头、高爆装药和引信组成,侵彻头一般为高强度钢或重金属合金材料,采用破片杀伤方式,引信通常为延时近炸引信或智能引信。侵彻战斗部一般采用大长径比,因武器携载能力限制,其直径一般不超过50厘米。此外,为进行精确打击,弹上还装有控制、导引系统。  相似文献   

3.
为获取侵爆战斗部终点弹道参数对桥梁以及桥面目标损伤效应的影响规律,建立战斗部侵彻桥梁并起爆的整个过程非线性动力学仿真模型,分析不同侵彻速度与不同引爆延时下桥梁产生的裂纹、结构失效分布以及桥面冲击波的传播规律。研究结果表明:基于桥梁失效分布计算了桥梁损伤后的抗弯能力,侵彻速度为800 m/s时采取1.95~2.95 ms的延时引爆可以使箱梁抗弯能力达到最低;延时14.95 ms引爆可以使最大长度的桥墩混凝土崩落,承载能力最低。基于冲击波超压对目标的损伤判据,侵彻速度为800 m/s时采取0.95 ms左右的延时引爆可以在爆心半径3 m范围内重伤或致死桥面人员,装甲车辆受到轻度或中等破坏。研究成果可为侵爆战斗部侵彻速度及引爆时间合理设置,为增大桥梁损伤程度提供参考。  相似文献   

4.
为了研究加筋靶板的运动对半穿甲战斗部侵彻性能的影响,采用ANSYS/LS-DYNA有限元软件对截卵形半穿甲战斗部侵彻运动加筋靶板全过程进行了数值模拟,分析了在不同弹着点处加筋靶板的运动对弹体偏转、弹体剩余动能以及弹体过载的影响。研究结果表明:弹体侵彻运动加筋靶板时发生明显偏转,侵彻性能降低,加速度变化曲线出现新的峰值且该峰值随着靶板速度增大而增大。同时,不同弹着点处弹体偏转角的变化过程,加速度变化规律与峰值大小以及靶板抗弹性能都有显著区别。  相似文献   

5.
为提高MEFP对战机、导弹等空中目标的毁伤效能,综合锥形药型罩形成的球状弹丸和球缺形药型罩形成的杆状弹丸的优势,设计了一种复合型MEFP战斗部,仿真并分析了该型MEFP中各成型弹丸的形状、初速及对钢靶的毁伤效果.仿真结果表明,该复合型MEFP可以同时产生不同速度、不同形状的侵彻弹丸,从而增强了MEFP对空中目标的综合毁伤效能.  相似文献   

6.
为探讨球头弹低速斜侵彻下靶板的破坏机理,通过系列弹道试验,对比分析不同初始速度下弹体的变形、靶板的破坏模式以及靶板的破口大小和形状;同时采用ANSYS/LS-DYNA对弹靶作用过程进行数值模拟。结果表明:低速斜侵彻下靶板响应非完全对称,根据受力特征可将靶板划分为四个不同区域,即接触区、弯曲区、拉伸区、对称区;薄板的穿甲破坏可分为四个不同的阶段,即隆起变形、碟形变形、弯曲变形、弹体贯穿阶段;不同初始速度下靶板出现四种典型的穿甲破坏模式,随着初始速度的增加依次为隆起—碟形变形、隆起—碟形变形—拉弯撕裂破坏、隆起—碟形变形—拉弯剪切破坏、隆起—拉弯剪切破坏。斜侵彻下靶板破口形状为椭圆形,随着初始速度的增加,破口长径不断减小,形状由椭圆形向卵形过渡。  相似文献   

7.
为提高聚能破甲战斗部的毁伤能力,设计了一种圆柱-双锥结合药型罩。用数值模拟方法,通过对该药型罩的正交优化设计,研究了药型罩圆柱部直径d、高度h、上锥角α、下锥角β对射流头部速度和侵彻深度的影响。研究结果表明,上锥角和圆柱部直径分别是影响射流头部速度和侵彻深度的主要因素。因此,在优化设计中得到了兼顾射流速度和侵彻深度的最佳药型罩结构:d=8 mm、h=12 mm、α=36°和β=56°时,射流头部速度为8 667 m/s,侵彻深度达到173.7 mm。优化设计的研究结果具有一定的实际工程指导意义,可为聚能破甲战斗部的性能提升提供有效的设计方案。  相似文献   

8.
为探讨球头弹低速斜侵彻下靶板的破坏机理,通过系列弹道试验,对比分析了不同初始速度下弹体的变形,靶板的破坏模式,以及靶板的破口大小及形状;同时采用ANSYS/LS-DYNA对弹靶作用过程进行了数值模拟。结果表明:低速斜侵彻下靶板响应非完全对称,根据受力特征可将靶板划分为四个不同区域,即接触区,弯曲区,拉伸区和对称区;薄板的穿甲破坏可分为四个不同的阶段,即隆起变形,碟形变形,弯曲变形,弹体贯穿阶段;不同初始速度下靶板出现四种典型的穿甲破坏模式,随着初始速度的增加依次为隆起—碟形变形,隆起—碟形变形—拉弯撕裂破坏,隆起—碟形变形—拉弯剪切破坏,隆起—拉弯剪切破坏。斜侵彻下靶板破口形状为椭圆形,随着初始速度的增加,破口长径不断减小,形状由椭圆形向卵形过渡。  相似文献   

9.
为分析着靶参数对截锥形半穿甲战斗部侵彻性能的影响程度,通过正交试验制定了试验方案并进行了数值仿真,同时对正交试验结果数据进行了灰关联分析,得到了弹体侵彻过程中着靶参数与弹体最大过载、速度变化量以及弹体偏转角之间的关联程度。分析结果表明:着靶参数对弹体最大过载的影响程度排序为:靶板厚度入射速度入射角度攻角;对弹体速度变化量的影响程度排序为:靶板厚度入射角度入射速度攻角;对弹体偏转角的影响程度排序依次为:弹体攻角入射速度入射角度靶板厚度。分析结论可为着靶姿态的控制及舰船防护提供一定的参考。  相似文献   

10.
利用有限元软件ANSYS/LS-DYNA对钨合金长杆弹侵彻陶瓷复合装甲与均质钢进行了数值仿真。重点分析了长杆弹垂直侵彻复合装甲全过程,研究了钨合金长杆弹体入射速度与弹体剩余动能、损失动能之间的关系。同时,拟合了长杆弹在不同入射速度侵彻均质钢靶下弹体剩余动能与靶板厚度之间的关系。并根据终点效应关系式,建立了弹体在不同入射速度下陶瓷复合装甲的均质钢等效靶板。分析结果表明,陶瓷复合装甲等效均质钢靶板厚度随弹体入射速度呈先增加后稳定趋势。研究结果对毁伤效能试验与战斗部设计等具有一定的参考价值和借鉴意义。  相似文献   

11.
对反辐射导弹的破片杀伤战斗部中较为常见的立方体破片的 3种典型姿态侵彻 (尖端、棱边及正面侵彻 ) 4mm厚 94 5钢的侵彻过程进行仿真数值计算 .通过仿真计算 ,结合实验结果比较 ,得出结论 :不同初始侵彻姿态的立方体破片在侵彻过程中 ,由于旋转角速度的作用及稳定性的要求 ,破片的侵彻姿态将趋于正面侵彻 .不同姿态的侵彻 ,侵彻威力相差不大  相似文献   

12.
杆式射流的毁伤效能与侵彻穿深和侵彻孔径紧密相关。为解决大穿深小孔径而导致后效毁伤下降的问题,采用LS-DYNA对战斗部威力进行数值仿真,以药型罩壁厚和罩高为主要变量对聚能装药战斗部结构进行一次优化,综合考虑典型装甲目标防护能力,选出一个最优的穿深和孔径匹配方案,并以此方案为基准方案进行二次优化,得到一种等壁厚球缺紫铜药型罩优化方案,并进行静爆试验对最终优化方案的仿真精度进行验证。实验结果表明,最终优化方案的杆式射流侵彻体对45钢的侵彻深度为121 mm,入孔直径为26.3 mm,出孔直径为21.8 mm,后效靶毁伤严重,杆式射流侵彻体和靶体二次破片能够引燃柴油油盒、木箱和棉被等易燃物,数值仿真结果与试验数据误差较小。该研究方法和结论可为聚能杆式射流战斗部的结构设计及优化提供参考。  相似文献   

13.
为研究药型罩结构对多功能弹威力性能的影响规律,在考虑高锥型药型罩的锥角2α、壁厚δ和内圆弧半径γ三个结构参量之间的交互作用以及战斗部破甲深度和破片速度2个威力指标的基础上,采用正交实验方法,依据正交表分别建立多功能战斗部侵彻45#钢靶的有限元模型,运用LS-DYNA软件数值模拟并采用加权评分法研究各结构参量对战斗部威力性能的综合影响。结果表明:30 mm多功能战斗部药型罩的最佳结构为“2α=85°、δ=0.6 mm、γ=2 mm”,此时战斗部破甲深度达84 mm,破片平均速度为601 m/s。研究结果可为增强微型多功能弹药威力以及正交实验方法在弹药结构研究中的应用提供借鉴和参考。  相似文献   

14.
为了研究装药结构在不同侵彻载荷下的动态响应特性,建立了战斗部侵彻混凝土整体靶与多层间隔靶模型。利用LS-DYNA软件数值模拟战斗部动态侵彻混凝土靶板的过程,对比分析了战斗部侵彻整体靶与多层间隔靶时冲击载荷的差异、装药内部塑性变形区的分布及装药尾部与壳体间隙的变化。结果表明:侵彻整体靶时,装药主要承受的是轴向过载冲击,其前端面易产生塑性变形;侵彻多层间隔靶时,由于战斗部姿态偏转较大,径向过载冲击大幅提升,装药端面、局部侧壁以及装药与壳体接触的尖角部位成为塑性变形较大的区域。在侵彻载荷作用下,装药尾端面与战斗部金属壳体发生反复的撞击和分离。与整体靶相比,侵彻多层间隔靶过程中装药与壳体的动态冲击碰撞更频繁,碰撞强度更大,持续时间更长。  相似文献   

15.
低速大质量球头弹冲击下薄板塑性动力响应分析   总被引:2,自引:0,他引:2  
为研究半穿甲导弹冲击下舷侧结构抗侵彻性能及机理,探讨舷侧抗半穿甲导弹侵彻结构设计,假设低速大质量球头弹冲击下薄板的穿甲破坏可分为隆起变形、碟形变形和弹体贯穿3个阶段,采用理想刚-塑性材料本构模型,同时考虑剪切、弯曲及薄膜拉伸对薄板变形和失效的作用,分析了薄板在冲击过程中的塑性动力响应及三个阶段中的变形吸能,并采用材料有效塑性应变失效准则分析了薄板的穿甲破坏准则,得到了弹体穿甲后的剩余动能和速度、薄板的弹道极限速度以及薄板的最大塑性变形。模型计算结果与实验结果及有限元分析结果吻合良好。  相似文献   

16.
为解决类D形截面战斗部装药能量输出均匀性差的问题,设计并优化了多点起爆方式,基于AUTODYN有限元数值模拟,研究了不同起爆方式下类D形截面战斗部爆轰波的传播过程,分析破片速度及空间分布规律;研究了不同截面形状对装药能量输出均匀性的影响,探讨在最优的起爆方式下不同长径比对装药能量输出的影响。研究结果表明,相对于单点起爆,三点起爆条件下破片速度最高615 m/s,且飞散同步性提升60%。随着异形截面形状对称性增加,装药能量输出均匀性明显改进。随着长径比的增加,战斗部中部破片平均速度提高67.4%,飞散同步性提高56.6%,且装药能量利用率提高。  相似文献   

17.
针对某截锥型药型罩成型装药结构进行了聚能射流(JET)和杆式侵彻体(JPC)两种不同毁伤元的转换规律的研究,运用ANSYS/AUTODYN 2D软件进行数值仿真计算,提出了基于毁伤元形态特征参数的单因素分析方法确定形成JET和JPC两种不同毁伤元的最佳起爆方式和药型罩优化结构参数,并用正交优化方法优化了长径比为1.05...  相似文献   

18.
为了验证TiZrNbVAl高熵合金弹体的可行性,开展了材料力学性能及弹体侵靶试验研究。对TiZrNbVAl高熵合金在应变率分别为10-3s-1、1 000 s-1、3 000 s-1和室温分别为、200℃、300℃条件下的力学性能进行了试验研究,获得了TiZrNbVAl高熵合金的准静态和动态力学性能,并对其冲击韧性、应变率效应及温度效应进行了分析,结果表明:TiZrNbVAl强度较好,抗冲击性能优异,在高温和动态加载条件下具有温度软化效应和应变率强化效应,并根据试验数据拟合得到了TiZrNbVAl高熵合金的Johnson-Cook模型参数。设计并开展了125 mm火炮侵靶验证试验,TiZrNbVAl弹体以786 m/s速度穿透2层Q345钢板,头部侵蚀较为严重,但主体结构完整,验证了TiZrNbVAl高熵合金用于侵彻战斗部壳体的可行性。采用数值仿真模型对侵彻过程进行了模拟,弹体头部侵蚀仿真结果与试验结果较为吻合,验证了材料模型和数值仿真模型可靠性。研究结论和成果可为高熵合金侵彻弹体设计提供思路和依据...  相似文献   

19.
为了研究不同质量G45钢破片对中大口径弹药壳体侵彻效应,利用有限元分析软件ANSYS/LS-DYNA建立破片侵彻壳体模型。将弹药壳体通过等效公式换为Q235钢板,开展了在不同速度下,不同质量G45钢破片侵彻等效靶板Q235钢数值模拟仿真。仿真分析结果表明:相同质量下,G45钢破片撞击靶板侵彻深度与侵彻直径随着速度增加呈现递增趋势;得到了4.7 g,9.8 g小质量G45钢破片在800~1800 m/s速度范围内无法有效穿透中大口径弹体等效靶的结论;19.5 g G45钢破片侵彻20 mm的中大口径弹体等效靶的极限穿透速度范围在1200~1400 m/s之间。  相似文献   

20.
为研究药型罩结构对线型聚能装药的影响,采用有限元软件LS-DYNA对不同截顶高度的锥顶、平顶与圆顶结构的线型聚能装药侵彻45钢靶板的过程进行了仿真分析。结果表明:不同结构的线型药型罩对线型聚能装药射流的成形与侵彻性能造成较大影响;平顶结构线型聚能装药在截顶高度为16 mm时有最优侵彻性能,较锥顶结构最大侵彻深度提升6.3%;圆顶结构线型聚能装药在截顶高位为10 mm时有最优侵彻性能,较锥顶结构最大侵彻深度提升15.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号