首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于对材料特性和防弹机理的认识,设计了由(SiC+Si)陶瓷、616装甲钢和高强PE材料构成的陶瓷基复合靶板,靶板防护面密度为118 kg/m2,尺寸为500 mm×500 mm×25 mm。利用现役12.7 mm穿甲燃烧弹考核靶板在6发弹打击下的防护能力,检验靶板设计思路。结果表明:靶板结构是可行的,可防住V25为818 m/s的现役12.7 mm穿甲燃烧弹。  相似文献   

2.
基于对材料特性和防弹机理的认识,设计了由Al2O3陶瓷、616装甲钢和高强PE材料构成的陶瓷基复合装甲板,并用现役127.mm穿甲燃烧弹进行靶试考核,检验靶板设计思路,结果表明:防护面密度为128 kg/m2的靶板可防住该弹。  相似文献   

3.
利用12.7 mm穿甲燃烧弹靶试陶瓷基的3种复合装甲板,探讨弹-靶的相互作用,研究陶瓷基复合装甲结构与陶瓷材料的抗弹性能.结果发现:当陶瓷板对弹丸的阻力与弹丸的作用力平衡时,陶瓷板可将弹丸挡在陶瓷板前;Al203陶瓷的抗弹能力优于(SiC+ Si)陶瓷;须约束陶瓷板才能充分发挥其抗弹优势.在分析弹-靶作用的基础上,提出“陶瓷基复合装甲存在陶瓷组元的弹靶临界厚度”概念,当陶瓷厚度大于临界厚度时,陶瓷板能将弹丸挡在陶瓷板前,而陶瓷自身的损害几乎可以忽略;陶瓷材料存在弹靶临界厚度的必要条件是其动态硬度高于弹丸,临界厚度取决于材料动态特性、靶板结构和靶板各组元的结合强度.  相似文献   

4.
碳化硼基3DMC材料抗弹性能的初步探讨   总被引:13,自引:3,他引:10  
通过7.62穿甲燃烧弹的射击考核,分析了碳化硼基3DMC材料的抗弹性能,发现其综合抗弹性能优于等厚度的某型号装甲钢,并具有抗击连续打击的能力,认为该材料可以独立用于装甲防护。  相似文献   

5.
设计并进行了7.62mm穿甲子弹侵彻陶瓷/低碳钢复合靶板的弹道试验,得到了极限速度及陶瓷锥底部半径等数据。分析了锥底半径与入射速度、面板及背板厚度的关系,着重分析了偏心入射时靶板的抗弹机理。结果表明:陶瓷锥可分为破碎区和粉碎区,粉碎区半径约为面板厚度与弹丸半径之和;当弹着点距离陶瓷面板边缘大于5mm时,靶板的抗弹性能变化不大,而弹着点位于距陶瓷面板边缘小于5mm的板边区时,抗弹性能明显降低,靶板的有效防护面积应扣除板边区。  相似文献   

6.
运用AUTODYN非线性显式动力学程序,对半无限厚钛合金靶板抗105mm钨合金穿甲模拟弹的倾角效应进行了数值模拟计算。结果表明:本数值模拟条件下,倾角小于30°时,半无限厚钛合金靶板抗105mm钨合金穿甲模拟弹的倾角效应不明显;倾角在中大角度(≥30°)时,呈较明显的倾角正效应;105mm钨合金穿甲模拟弹侵彻半无限厚钛合金靶板的跳弹角β在65°~70°间。  相似文献   

7.
为研究7. 62 mm子弹对斜置陶瓷复合装甲的毁伤效应,针对典型7. 62 mm穿甲子弹结构,利用ANSYS/LSDYNA动力学软件对穿甲过程进行了数值模拟,并通过弹道枪试验对不同斜置角度复合装甲进行了防御性能测试,最后分析了子弹的破坏形式及斜置角度对毁伤效能的影响规律。结果表明:7. 62 mm子弹对陶瓷复合靶板的毁伤效能随靶板斜置角度的增加逐渐降低,回收的子弹式样的剩余质量逐渐增加,同时钢芯的质量侵蚀由垂直侵蚀向轴侧倾斜方向侵蚀过渡;且随斜置角度的增加,穿甲子弹的偏转角度先增加后减小,其对复合靶板的极限穿透速度呈指数型增加,其中穿甲子弹对陶瓷复合装甲的极限穿透斜置角度为0°~15°。试验结果与数值模拟结果具有较好的一致性。  相似文献   

8.
为了研究加筋靶板的运动对半穿甲战斗部侵彻性能的影响,采用ANSYS/LS-DYNA有限元软件对截卵形半穿甲战斗部侵彻运动加筋靶板全过程进行了数值模拟,分析了在不同弹着点处加筋靶板的运动对弹体偏转、弹体剩余动能以及弹体过载的影响。研究结果表明:弹体侵彻运动加筋靶板时发生明显偏转,侵彻性能降低,加速度变化曲线出现新的峰值且该峰值随着靶板速度增大而增大。同时,不同弹着点处弹体偏转角的变化过程,加速度变化规律与峰值大小以及靶板抗弹性能都有显著区别。  相似文献   

9.
防半穿甲导弹战斗部动能穿甲模拟试验研究   总被引:4,自引:0,他引:4  
根据半穿甲导弹破坏机理和穿甲力学中的相似理论 ,以目前世界上典型的半穿甲导弹战斗部为模拟对象 ,设计出试验装置、弹丸和 3个系列共十几种结构形式的靶板 .通过对试验结果的分析比较 ,得出各种装甲结构形式抗半穿甲导弹动能穿甲特性 .  相似文献   

10.
研究了舰炮半穿甲弹对舰船靶板侵彻能力,采用LS-DYNA有限元软件对美海军奥托·梅拉127 mm和76 mm舰炮弹药临界跳弹、打击甲板和侧舷靶板进行仿真,结果表明:以300 m/s速度打击15 mmE36钢板条件下,127 mm弹的临界跳角为9.5°,76 mm弹为29°;从甲板和侧舷攻击条件下,两弹均具备穿透多层舰船靶板的能力。舰炮弹药攻击舰船目标,可考虑适当延迟舰炮弹药起爆时间,在其进入内部重要舱室时引爆,提高对船体的毁伤效果。  相似文献   

11.
为探讨陶瓷/薄钢板复合结构靶板(ceramic/thin steel targets,CS靶板)的抗高速侵彻机理,通过弹道试验,分析了3 mm厚SiC陶瓷层和0.6 mm厚钢板层的CS靶板的破坏模式和抗侵彻性能,并与面密度基本相同的纯钢板进行了比较。在此基础上,基于能量守恒原理,建立了CS靶板抗高速侵彻的理论预测模型,并与试验结果进行了对比。结果表明,CS靶板中前陶瓷层的存在,使得后钢板层的破坏模式由剪切冲塞转变为花瓣开裂,大大提升了后钢板层的抗侵彻吸能效率,从而使得CS靶板的整体抗侵彻性能高于等面密度的纯钢板,CS靶板的整体抗侵彻效率较等面密度纯钢板提升15%以上;弹体穿透CS靶板后的剩余速度理论预测值与试验结果吻合较好,相对误差均在5%以内,验证了理论模型的合理性和有效性。  相似文献   

12.
钢管约束混凝土抗侵彻性能试验   总被引:1,自引:1,他引:0       下载免费PDF全文
进行了12.7mm穿甲枪弹侵彻钢管约束混凝土和PVC管约束混凝土厚靶试验,建立了硬芯枪弹侵彻深度公式,研究了钢管约束混凝土的抗侵彻性能。结果表明:钢管约束混凝土靶的破坏模式与无约束混凝土靶存在显著不同,其核心混凝土侧面出现了环向裂纹;相对于无约束混凝土靶,钢管约束混凝土靶的抗侵彻能力明显提高,并具有较强的抗多发打击能力。  相似文献   

13.
为探讨连接方式对舰船舷侧外设复合装甲结构抗穿甲性能的影响,采用均质钢板粘结或叠层接触前置复合材料板分别模拟舰船舷侧粘敷或铆接固定两种连接方式的外设舷侧复合装甲,并结合低速弹道实验,分析了两种连接方式下组合靶板的穿甲破坏模式和抗弹性能,得到了球头弹穿透叠层接触组合靶板的剩余速度理论预测公式。在此基础上,将该理论预测公式计算结果与实验结果进行了比较分析。结果表明:两种组合靶板中前置装甲板的穿甲破坏模式差异不大,但叠层接触组合靶板中钢质背板穿孔周围的蝶形变形范围及其变形程度均较粘结组合靶板中的钢质背板要大;叠层接触组合靶板的整体抗弹吸能要大于粘结组合靶板;弹丸穿透叠层接触组合靶板的剩余速度理论预测值与实验结果吻合较好。  相似文献   

14.
B4C/Al复合板中应力波行为分析(Ⅰ)   总被引:1,自引:1,他引:0  
依据7.62mm穿甲燃烧弹与B4C,Al板的物理和力学特性,提出弹、板的力学模型;在此基础上,给出弹板碰撞后B4C/Al复合板的弹性动力学方程,建立应力波的传播模型,讨论了应力波传播时复合板的力学行为,最后确定了复合板承受的初始冲击应力。理论分析表明:一维应变条件的B4C和Al板的弹性极限高于一维应力条件下的值;弹、板间的作用力服从指数衰减规律;B4C板的初始应力高于430MPa时,应力波的作用使Al板在卸载过程中发生反向屈服。  相似文献   

15.
利用LS—DYNA软件分析弹体攻角和目标运动对穿甲过程中装药安定性、弹体剩余速度及弹头姿态的影响。在穿甲过程中,弹体速度为300m/s,攻角分别为0°,10°和20°,弹体和目标板选择了考虑应变、应变率和温度效应的Johnson—cook材料模型。结果表明:随攻角的增大,装药局部受力显著增大,弹体剩余速度下降,弹头发生偏转;目标运动使穿甲能力减弱,但目标运动会使装药受到的外力在一定程度上减少。  相似文献   

16.
为探讨球头弹低速斜侵彻下靶板的破坏机理,通过系列弹道试验,对比分析了不同初始速度下弹体的变形,靶板的破坏模式,以及靶板的破口大小及形状;同时采用ANSYS/LS-DYNA对弹靶作用过程进行了数值模拟。结果表明:低速斜侵彻下靶板响应非完全对称,根据受力特征可将靶板划分为四个不同区域,即接触区,弯曲区,拉伸区和对称区;薄板的穿甲破坏可分为四个不同的阶段,即隆起变形,碟形变形,弯曲变形,弹体贯穿阶段;不同初始速度下靶板出现四种典型的穿甲破坏模式,随着初始速度的增加依次为隆起—碟形变形,隆起—碟形变形—拉弯撕裂破坏,隆起—碟形变形—拉弯剪切破坏,隆起—拉弯剪切破坏。斜侵彻下靶板破口形状为椭圆形,随着初始速度的增加,破口长径不断减小,形状由椭圆形向卵形过渡。  相似文献   

17.
为研究钢管约束混凝土抗多发打击性能,进行了12.7 mm穿甲弹多发打击钢管约束混凝土厚靶试验,得到靶的损伤模式和侵彻深度,并建立重复打击侵彻深度预测公式。结果表明:厚度为300 mm的小直径钢管约束混凝土靶能够有效防御3发12.7 mm穿甲弹的重复打击,第二、第三发较前一发侵彻深度的增幅分别小于20%和10%;重复打击侵彻深度预测公式与试验吻合较好。研究结果可为钢管约束混凝土防枪弹结构和遮弹层结构的研究提供参考。  相似文献   

18.
为探讨球头弹低速斜侵彻下靶板的破坏机理,通过系列弹道试验,对比分析不同初始速度下弹体的变形、靶板的破坏模式以及靶板的破口大小和形状;同时采用ANSYS/LS-DYNA对弹靶作用过程进行数值模拟。结果表明:低速斜侵彻下靶板响应非完全对称,根据受力特征可将靶板划分为四个不同区域,即接触区、弯曲区、拉伸区、对称区;薄板的穿甲破坏可分为四个不同的阶段,即隆起变形、碟形变形、弯曲变形、弹体贯穿阶段;不同初始速度下靶板出现四种典型的穿甲破坏模式,随着初始速度的增加依次为隆起—碟形变形、隆起—碟形变形—拉弯撕裂破坏、隆起—碟形变形—拉弯剪切破坏、隆起—拉弯剪切破坏。斜侵彻下靶板破口形状为椭圆形,随着初始速度的增加,破口长径不断减小,形状由椭圆形向卵形过渡。  相似文献   

19.
在建立弹靶模型的基础上,采用有限元软件LS-DYNA对装填尼龙的侵彻膨胀弹以不同着靶速度侵彻4340钢靶板的过程进行了数值模拟。结果表明:着靶速度对侵彻膨胀弹横向效应的产生有一定的影响。在PELE能够穿透靶板的前提下,随着着靶速度的进一步增加,横向效应的作用区域呈现出先减小后增大的趋势,而PELE穿透靶板后的速度损失越来越小;综合考虑横向效应的有效发挥和常规发射条件,PELE着靶速度的选取应选取800 m/s~1 300 m/s较为合适。  相似文献   

20.
为研究射流侵彻靶板开坑阶段的参数变化规律,利用AUTODYN软件对聚能射流侵彻不同材料靶板的开坑过程进行仿真.仿真结果表明:铜质靶板和钢质靶板开坑阶段的侵彻深度均约4.67倍射流头部直径,陶瓷靶板开坑阶段的侵彻深度约为4倍射流头部直径.该结果与试验总结的数倍射流直径基本相符,证明了所建模型的可行性.另外,开坑阶段的侵彻深度和压力主要与靶板密度有关,而准定常侵彻阶段的压力则主要与靶板的强度有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号