首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

2.
This article analyses a divergent supply chain consisting of a central warehouse and N nonidentical retailers. The focus is on joint evaluation of inventory replenishment and shipment consolidation effects. A time‐based dispatching and shipment consolidation policy is used at the warehouse in conjunction with real‐time point‐of‐sale data and centralized inventory information. This represents a common situation, for example, in various types of vendor managed inventory systems. The main contribution is the derivation of an exact recursive procedure for determining the expected inventory holding and backorder costs for the system, under the assumption of Poisson demand. Two heuristics for determining near optimal shipment intervals are also presented. The results are applicable both for single‐item and multiitem systems. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 59–71, 2011  相似文献   

3.
We consider a distribution system consisting of a central warehouse and a group of retailers facing independent stochastic demand. The retailers replenish from the warehouse, and the warehouse from an outside supplier with ample supply. Time is continuous. Most previous studies on inventory control policies for this system have considered stock‐based batch‐ordering policies. We develop a time‐based joint‐replenishment policy in this study. Let the warehouse set up a basic replenishment interval. The retailers are replenished through the warehouse in intervals that are integer multiples of the basic replenishment interval. No inventory is carried at the warehouse. We provide an exact evaluation of the long‐term average system costs under the assumption that stock can be balanced among the retailers. The structural properties of the inventory system are characterized. We show that, although it is well known that stock‐based inventory control policies dominate time‐based inventory control policies at a single facility, this dominance does not hold for distribution systems with multiple retailers and stochastic demand. This is because the latter can provide a more efficient mechanism to streamline inventory flow and pool retailer demand, even though the former may be able to use more updated stock information to optimize system performance. The findings of the study provide insights about the key factors that drive the performance of a multiechelon inventory control system. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 637–651, 2013  相似文献   

4.
We consider an inventory system with one warehouse and N retailers. Transportation times are constant and the retailers face independent Poisson demand. Each facility applies a periodic review order-up-to-S policy. In case of shortages at the warehouse, orders for individual units are filled in the same order as the original demand at the retailers, i.e., according to a so-called virtual allocation scheme. Using that the considered policy is very similar to a continuous review one-for-one ordering policy, we are able to provide simple recursive procedures for exact evaluation of holding and shortage costs. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

6.
Consider a distribution system with a central warehouse and multiple retailers. Customer demand arrives at each of the retailers continuously at a constant rate. The retailers replenish their inventories from the warehouse which in turn orders from an outside supplier with unlimited stock. There are economies of scale in replenishing the inventories at both the warehouse and the retail level. Stockouts at the retailers are backlogged. The system incurs holding and backorder costs. The objective is to minimize the long‐run average total cost in the system. This paper studies the cost effectiveness of (R, Q) policies in the above system. Under an (R, Q) policy, each facility orders a fixed quantity Q from its supplier every time its inventory position reaches a reorder point R. It is shown that (R, Q) policies are at least 76% effective. Numerical examples are provided to further illustrate the cost effectiveness of (R, Q) policies. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 422–439, 2000  相似文献   

7.
We consider the Inventory‐Routing Problem (IRP) where n geographically dispersed retailers must be supplied by a central facility. The retailers experience demand for the product at a deterministic rate, and incur holding costs for keeping inventory. Distribution is performed by a fleet of capacitated vehicles. The objective is to minimize the average transportation and inventory costs per unit time over the infinite horizon. We focus on the set of Fixed Partition Policies (FPP). In an FPP, the retailers are partitioned into disjoint and collectively exhaustive sets. Each set of retailers is served independently of the others and at its optimal replenishment rate. Previous research has measured the effectiveness of an FPP solution relative to a lower bound over all policies. We propose an additional measure that is relative to the optimal FPP. In this paper we construct a polynomial‐time partitioning scheme that is shown to yield an FPP whose cost is asymptotically within 1.5% + ? of the cost of an optimal FPP, for arbitrary ? > 0. In addition, in some cases, our polynomial‐time scheme yields an FPP whose cost is asymptotically within 1.5% + ? of the minimal policy's cost (over all feasible policies). © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

8.
We evaluate an approach to decrease inventory costs at retail inventory locations that share a production facility. The retail locations sell the same product but differ in the variance of retail demand. Inventory policies at retail locations generate replenishment orders for the production facility. The production facility carries no finished goods inventory. Thus, production lead time for an order is the sojourn time in a single server queueing system. This lead time affects inventory costs at retail locations. We examine the impact of moving from a First Come First Served (FCFS) production rule for orders arriving at the production facility to a rule in which we provide non‐preemptive priority (PR) to orders from retail locations with higher demand uncertainty. We provide three approximations for the ratio of inventory costs under PR and FCFS and use them to identify conditions under which PR decreases retail inventory costs over FCFS. We then use a Direct Approach to establish conditions when PR decreases retail inventory costs over FCFS. We extend the results to orders from locations that differ in the mean and variance of demand uncertainty. The analysis suggests that tailoring lead times to product demand characteristics may decrease system inventory costs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 376–390, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10016  相似文献   

9.
In this paper, we present an optimization model for coordinating inventory and transportation decisions at an outbound distribution warehouse that serves a group of customers located in a given market area. For the practical problems which motivated this paper, the warehouse is operated by a third party logistics provider. However, the models developed here may be applicable in a more general context where outbound distribution is managed by another supply chain member, e.g., a manufacturer. We consider the case where the aggregate demand of the market area is constant and known per period (e.g., per day). Under an immediate delivery policy, an outbound shipment is released each time a demand is realized (e.g., on a daily basis). On the other hand, if these shipments are consolidated over time, then larger (hence more economical) outbound freight quantities can be dispatched. In this case, the physical inventory requirements at the third party warehouse (TPW) are determined by the consolidated freight quantities. Thus, stock replenishment and outbound shipment release policies should be coordinated. By optimizing inventory and freight consolidation decisions simultaneously, we compute the parameters of an integrated inventory/outbound transportation policy. These parameters determine: (i) how often to dispatch a truck so that transportation scale economies are realized and timely delivery requirements are met, and (ii) how often, and in what quantities, the stock should be replenished at the TPW. We prove that the optimal shipment release timing policy is nonstationary, and we present algorithms for computing the policy parameters for both the uncapacitated and finite cargo capacity problems. The model presented in this study is considerably different from the existing inventory/transportation models in the literature. The classical inventory literature assumes that demands should be satisfied as they arrive so that outbound shipment costs are sunk costs, or else these costs are covered by the customer. Hence, the classical literature does not model outbound transportation costs. However, if a freight consolidation policy is in place then the outbound transportation costs can no longer be ignored in optimization. Relying on this observation, this paper models outbound transportation costs, freight consolidation decisions, and cargo capacity constraints explicitly. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 531–556, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10030  相似文献   

10.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

11.
The system under study is a single item, two‐echelon production‐inventory system consisting of a capacitated production facility, a central warehouse, and M regional distribution centers that satisfy stochastic demand. Our objective is to determine a system base‐stock level which minimizes the long run average system cost per period. Central to the approach are (1) an inventory allocation model and associated convex cost function designed to allocate a given amount of system inventory across locations, and (2) a characterization of the amount of available system inventory using the inventory shortfall random variable. An exact model must consider the possibility that inventories may be imbalanced in a given period. By assuming inventory imbalances cannot occur, we develop an approximation model from which we obtain a lower bound on the per period expected cost. Through an extensive simulation study, we analyze the quality of our approximation, which on average performed within 0.50% of the lower bound. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 377–398, 2000  相似文献   

12.
Considered is a two-level inventory system with one central warehouse and N retailers facing different independent compound Poisson demand processes. The retailers replenish from the warehouse and the warehouse from an outside supplier. All facilities apply continuous review installation stock (R, Q) policies with different reorder points and batch quantities. Presented is a new approximate method for evaluation of holding and shortage costs, which can be used to select optimal policies. The accuracy of the approximation is evaluated by comparison with exact and simulated results. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
The operating characteristics of (s,S) inventory systems are often difficult to compute, making systems design and sensitivity analysis tedious and expensive undertakings. This article presents a methodology for simplified sensitivity analysis, and derives approximate expressions for operating characteristics of a simple (s,S) inventory system. The operating characteristics under consideration are the expected values of total cost per period, holding cost per period, replenishment cost per period, backlog cost per period, and backlog frequency. The approximations are obtained by using least-squares regression to fit simple functions to the operating characteristics of a large number of inventory items with diverse parameter settings. Accuracy to within a few percent of actual values is typical for most approximations. Potential uses of the approximations are illustrated for several idealized design problems, including consolidating demand from several locations, and tradeoffs for increasing service or reducing replenishment delivery lead time.  相似文献   

14.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

15.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

16.
Many organizations providing service support for products or families of products must allocate inventory investment among the parts (or, identically, items) that make up those products or families. The allocation decision is crucial in today's competitive environment in which rapid response and low levels of inventory are both required for providing competitive levels of customer service in marketing a firm's products. This is particularly important in high-tech industries, such as computers, military equipment, and consumer appliances. Such rapid response typically implies regional and local distribution points for final products and for spare parts for repairs. In this article we fix attention on a given product or product family at a single location. This single-location problem is the basic building block of multi-echelon inventory systems based on level-by-level decomposition, and our modeling approach is developed with this application in mind. The product consists of field-replaceable units (i.e., parts), which are to be stocked as spares for field service repair. We assume that each part will be stocked at each location according to an (s, S) stocking policy. Moreover, we distinguish two classes of demand at each location: customer (or emergency) demand and normal replenishment demand from lower levels in the multiechelon system. The basic problem of interest is to determine the appropriate policies (si Si) for each part i in the product under consideration. We formulate an approximate cost function and service level constraint, and we present a greedy heuristic algorithm for solving the resulting approximate constrained optimization problem. We present experimental results showing that the heuristics developed have good cost performance relative to optimal. We also discuss extensions to the multiproduct component commonality problem.  相似文献   

17.
We consider an inventory system with one warehouse and N retailers. All installations apply different order-up-to-S policies. Transportation times are constant and the retailers face compound Poisson demand. We provide a simple recursive procedure for the evaluation of holding and shortage costs for different control policies. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
An approximate method for measuring the service levels of the warehouse-retailer system operating under (s, S) policy is presented. All the retailers are identical and the demand process at each retailer follows a stationary stuttering Poisson process. This type of demand process allows customer orders to be for a random number of units, which gives rise to the undershoot quantity at both the warehouse and retailer levels. Exact analyses of the distribution of the undershoot quantity and the number of orders place by a retailer during the warehouse reordering lead time are derived. By using this distribution together with probability approximation and other heuristic approaches, we model the behavior of the warehouse level. Based on the results of the warehouse level and on an existing framework from previous work, the service level at the retailer level is estimated. Results of the approximate method are then compared with those of simulation. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
We consider a multi‐stage inventory system composed of a single warehouse that receives a single product from a single supplier and replenishes the inventory of n retailers through direct shipments. Fixed costs are incurred for each truck dispatched and all trucks have the same capacity limit. Costs are stationary, or more generally monotone as in Lippman (Management Sci 16, 1969, 118–138). Demands for the n retailers over a planning horizon of T periods are given. The objective is to find the shipment quantities over the planning horizon to satisfy all demands at minimum system‐wide inventory and transportation costs without backlogging. Using the structural properties of optimal solutions, we develop (1) an O(T2) algorithm for the single‐stage dynamic lot sizing problem; (2) an O(T3) algorithm for the case of a single‐warehouse single‐retailer system; and (3) a nested shortest‐path algorithm for the single‐warehouse multi‐retailer problem that runs in polynomial time for a given number of retailers. To overcome the computational burden when the number of retailers is large, we propose aggregated and disaggregated Lagrangian decomposition methods that make use of the structural properties and the efficient single‐stage algorithm. Computational experiments show the effectiveness of these algorithms and the gains associated with coordinated versus decentralized systems. Finally, we show that the decentralized solution is asymptotically optimal. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

20.
We consider a setting in which inventory plays both promotional and service roles; that is, higher inventories not only improve service levels but also stimulate demand by serving as a promotional tool (e.g., as the result of advertising effect by the enhanced product visibility). Specifically, we study the periodic‐review inventory systems in which the demand in each period is uncertain but increases with the inventory level. We investigate the multiperiod model with normal and expediting orders in each period, that is, any shortage will be met through emergency replenishment. Such a model takes the lost sales model as a special case. For the cases without and with fixed order costs, the optimal inventory replenishment policy is shown to be of the base‐stock type and of the (s,S) type, respectively. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号